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CHAPTER I

INTRODUCTION

Music making and music listening are cross-cultural human activities that

pervade every aspect of daily life. We hear music intentionally, e.g. when we

attend a music concert or turn on the radio; and we experience it passively when

we are subjected to commercial advertisements, or the person sitting next to us has

their headphones turned up. Musical activities are culturally ubiquitous—there is

no record of modern human society without some form of music. And music has

been with us for a long time—archeological evidence suggests that humans may

have been building musical instruments as many as 45,000 years ago (Kunej &

Turk, 2000).

Musical activity recruits neural resources inter-hemispherically and across

the human brain, including centers for pleasure, movement, visuospatial tasks,

emotion, pitch processing, and memory. We have distinct circuitry for managing

non-speech, musical auditory stimuli. Some researchers find (uniquely to our

species) a strong evolutionary basis for the the musical disposition that we find

ourselves having (Levitin, 2006).

It is difficult to come up with a singular definition for music, but one

popular explanation, by Edgard Varèse, is that it is “organized sound” (Clayson,

2002). If that is so, than we can understand music as an organization of basic

perceptual components. When we compose, perform, and record music, we aim to

execute explicit control over the organization and interpretation of its components.

For these reasons, we must understand what they are, and how they are important

to us.
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Can we canonically organize music into distinct perceptual dimensions? If

so, can stimuli that act upon our perceptual dimensions be qualitatively and

quantitatively evaluated? And do people exhibit enough consistency in reaction

that we can predict human perception? To answer the first question, Levitin (2002)

identifies 8 separable musical attributes that we perceive—loudness, pitch,

contour, duration, tempo, timbre, spatial location, and reverberation—which are

often organized into higher level concepts of musical hearing, such as key. And to

answer the second and third questions, we have methods of evaluating stimuli and

predicting response to some, but not all, perceptual dimensions. For

instance, (Suzuki & Takeshima, 2004) define an objective measurement of

loudness based upon sound-pressure level and hearing experiments collected from

12 countries. Yet their “equal-loudness contours” only explain our perception of

pure-tones, not complex musical stimuli. So it is with many higher-level concepts

of musical hearing; as the stimulus get more complex (and more musical), a robust

model of perception is increasingly difficult to build. Yet this does not negate the

value of building such models.

To exploit Varése’s definition further, music, in order to be interpreted as

such and not noise, requires skilled execution of organization. Good musicians

organize the basic perceptual components of music to form (usually enjoyable)

higher-level impressions such as mood, color, emotive valence, and space. It is the

job of recording engineers and music producers to faithfully transfer a musician’s

expression to a static medium. And furnished with expert knowledge of music

theory, acoustics, and signal processing technology, they optimize this process to

elicit and manipulate desirable musical impressions from listeners.

One such impression is auditory spaciousness—the concept of type and

size of an actual or simulated space (Blauert & Lindemann, 1986). The perception

of space is an important component to the way humans hear recorded music;
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engineers and producers capture, manipulate, and add spatial cues to provide

robust impressions of simulated acoustic spaces, whether intentionally natural or

unnatural sounding. During recording, the character and extent of these spatial

cues are controlled through means such as relative placement of microphones,

performers, and reflecting surfaces. When mixing, engineers control the character

and extent of spatial attributes through means such as source mixing, digital signal

processing, and multichannel panning. The artful handling of these cues creates

novel and enjoyable experiences for the listener. For instance, Västfjäll, Larsson,

& Kleiner (2002) have shown that reverberation time in recordings influences

emotional interpretation of music. The management and manipulation of recorded

and synthesized spatial cues are a necessary and important step in music

production.

Yet the concept of spaciousness in recorded music has not been treated

explicitly in terms of the questions posed above. We do not know whether it is

heard consistently by humans; we do not have an objective means of measuring

spaciousness in recorded music; and, to the best of this author’s knowledge, no

study has attempted to predict perceptual response to spaciousness for music

recordings. Here, an answer to these questions is attempted.

More specifically, this paper answers these questions from a Music

Information Retrieval (MIR) perspective. MIR systems perform analyses upon

symbolically-represented music or music recordings and retrieve human-relevant

information about them. In its entirety, this work presents a complete system for

retrieving a stream of perceptually meaningful information (spaciousness) from its

digital recording. The paper will show that humans perceive the spaciousness of

music recordings in a consistent fashion. It will present two new signal analysis

techniques to measure spatial information in recorded music. And it will
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demonstrate a means of mapping subjective experience to objective measurements

of musical recordings.

The approach of the paper is outlined in Figure I.1 and is organized as

follows: The next chapter (II) will provide detail on which dimensions of

spaciousness have been studied previously, and how those works relate to this one.

Based on those studies, the concept of spaciousness will be modeled as an

aggregation of three nonorthogonal dimensions of perception. In Chapter III, a

data set of musical recordings is built and a human subject study is executed to

collect quantitative ratings on spaciousness for recorded music along the three

dimensions. The results are examined for their consistency, individual correlation

to demographic factors, and cross-correlation. Chapter IV proposes two objective

measurements of digital signal for spaciousness. These are empirically validated

in an experimental framework. Finally, machine learning is used to predict

perceived spaciousness by mapping the subjective data collected in Chapter III to

objective measurements, including the ones proposed in Chapter IV. Concluding

remarks and future work are laid out in Chapter VI.
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MUSIC RECORDINGS
Chapter III

OBJECTIVE 
MEASUREMENTS

Chapter IV

SUBJECTIVE RATINGS
Chapter III

MACHINE LEARNING & 
PREDICTION

Chapter V

DIMENSIONS OF SPACIOUSNESS
Chapter II

Figure I.1: Framework for predicting perceived spaciousness of music recordings.

5



CHAPTER II

SPACIOUSNESS

The spaciousness of musical recordings is not a well-defined concept.

Casual conversation about a musical recording often leads to such comments as,

“The lead singer sounded far away,” or “That mix sounded really large.” Yet, to

my knowledge, there have been no empirical investigations into what perceptual

attributes lead to such space-related comments for music recordings. When a

person describes their listening experience in such a way, what exact

electro-acoustic properties of the recorded signal bring about their response, and

what are the specific perceptual components that inform such decisions? Because

one of the goals of this paper is to answer the first question, a satisfactory answer

to the second must be obtained. For the answer, this work turns to research in two

related domains—natural acoustics and audio quality.

Natural Acoustics

In natural acoustics, researchers question what the physical properties are

that lead some listening environments to sound better than others.

In 1967, Marshall determined that “spatial responsiveness,” is a desirable property

of concert halls. By analyzing echograms and architectural drawings of two

dissimilar rooms, he concluded that good spatial responsiveness arises from

well-distributed early reflections of the direct sources. After Marshall,

spaciousness in music halls was parameterized by two distinct dimensions:

Apparent Source Width (ASW) (Keet, 1968), and later, Listener
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Envelopment (LEV) (M. Morimoto & Maekawa, 1989; M. Morimoto, Fujimori, &

Maekawa, 1990). The first has consistently been attributed to early lateral

reflections and the latter to the late arriving sound in an acoustic space. While the

terms have been distinguished by different labels and varying definitions, they

have more or less been used to describe the same distinct phenomena throughout.

(For a brief overview of the development and semantic meanings of the terms

ASW and LEV, I recommend Marshall & Barron, 2001.)

Despite minor differences in interpretation across studies, the perceptual

dimensions of ASW and LEV can be defined thusly:

Apparent source width (ASW) is the apparent auditory width of the
sound field created by a performing entity as perceived by a listener
in the audience area of a concert hall.
. . .
Listener envelopment (LEV) is the subjective impression by a
listener that (s)he is enveloped by the sound field, a condition that is
primarily related to the reverberant sound field. (Okano, Beranek,
& Hidaka, 1998)

In natural acoustic environments, the relative positions of sound sources to

each other, the relative positions of sound sources to a listener, the listener’s and

sources’ relative positions to the surfaces of the listening environment, and the

physical composition of the structures that form and fill the listening environment

are each factors that contribute to ASW and LEV. Because ASW and LEV are

experienced in a linear, time-invariant system (a “live” listening environment), the

transfer function for various source-listener relationships can be captured and

analyzed for spatial impression. There have been many such objective

measurements for each. The inter-aural correlation function is usually used to

measure ASW (Barron & Marshall, 1981; Okano et al., 1998; Vries, Hulsebos, &

Baan, 2001; M. . Morimoto & Iida, 2005), for a refutal (Mason, Brookes, &

Rumsey, 2005), and varying measurements of late arriving energy are used for
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LEV (Bradley & Soulodre, 1995a,b; Furuya, Fujimoto, Young Ji, & Higa, 2001;

Barron, 2001; Evjen, Bradley, & Norcross, 2001; Hanyu & Kimura, 2001;

M. Morimoto, Jinya, & Nakagawa, 2007). ASW and LEV provide not only

well-defined semantic meanings for perceived spaciousness in“live” listening

environments, but a means of studying their relationship to measurable quantities

in the physical world.

Audio Quality

Spaciousness has been a focal point of research for audio quality

evaluation, especially for multi-channel sound reproduction systems. Such

systems, like Surround Sound, create a virtual representation of spatial sound out

of a discrete number of audio channels. Because the quality of these systems hinge

on the believability and enjoyability of the display, researchers must have an

empirical system for qualitative evaluation. Investigators must know the

dimensions of spaciousness that are most important to human listeners for any

meaningful evaluation of sound quality for spatial reproduction systems.

Experiments with various attribute elicitation techniques have been reported,

including Repertory Grid Technique and non-verbal techniques (Rumsey, 1998;

Berg & Rumsey, 1999; Mason, Ford, Rumsey, & Bruyn, 2001; Ford, Rumsey, &

Bruyn, 2001; Ford, Rumsey, & Nind, 2003b,a, 2005). And commonly elicited

attributes have been analyzed with respect to preference of reproducing system,

sound stimulus, and factor analysis (Berg & Rumsey, 1999, 2000, 2001; Zacharov

& Koivuniemi, 2001; Rumsey, 2002; Berg & Rumsey, 2003; Guastavino & Katz,

2004; Choisel & Wickelmaier, 2007).
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Attribute Description

Naturalness How similar to a natural (i.e. not reproduced through e.g.

loudspeakers) listening experience the sound as a whole

sounds.

Presence The experience of being in the same acoustical environ-

ment as the sound source, e.g. to be in the same room.

Preference If the sound as a whole pleases you. If you think the

sound as a whole sounds good. Try to disregard the con-

tent of the programme, i.e. do not assess genre of music

or content of speech.

Low frequency

content

The level of low frequencies (the bass register).

Ensemble

width

The perceived width/broadness of the ensemble, from its

left flank to its right flank. The angle occupied by the en-

semble. The meaning of “the ensemble” is all of the indi-

vidual sound sources considered together. Does not nec-

essarily indicate the known size of the source, e.g. one

knows the size of a string quartet in reality, but the task

to assess is how wide the sound from the string quartet

is perceived. Disregard sounds coming from the sound

source’s environment, e.g. reverberation—only assess

the width of the sound source.

9



Attribute Description

Individual

source width

The perceived width of an individual sound source (an

instrument or a voice). The angle occupied by this

source. Does not necessarily indicate the known size of

such a source, e.g. one knows the size of a piano in real-

ity, but the task is to assess how wide the sound from the

piano is perceived. Disregard sounds coming from the

sound source’s environment, e.g. reverberation—only

assess the width of the sound source.

Localisation How easy it is to perceive a distinct location of the

source—how easy it is to pinpoint the direction of the

sound source. Its opposite is when the source’s position

is hard to determine—a blurred position.

Source dis-

tance

The perceived distance from the listener to the sound

source.

Source envel-

opment

The extent to which the sound source en-

velops/surrounds/exists around you. The feeling of

being surrounded by the sound source. If several sound

sources occur in the sound excerpt: assess the sound

source perceived to be the most enveloping. Disregard

sounds coming from the sound source’s environment,

e.g. reverberation—only assess the sound source.

Room width The width/angle occupied by the sounds coming from

the sound source’s reflections in the room (the reverbera-

tion). Disregard the direct sound from the sound source.
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Attribute Description

Room size In cases where you perceive a room/hall, this denotes the

relative size of that room.

Room sound

level

The level of sounds generated in the room as a result of

the sound source’s action, e.g. reverberation—i.e. not

extraneous disturbing sounds. Disregard the direct sound

from the sound source.

Room envel-

opment

The extent to which the sound coming from the sound

source’s reflections in the room (the reverberation) en-

velops/surrounds/exists around you i.e. not the sound

source itself. The feeling of being surrounded by the re-

flected sound.

Table II.1: Most common spatial attributes reported by Berg & Rumsey (2003).

Berg & Rumsey (2003) review the collective results of this research, and

attributes that they have found to be the most important are reprinted in Table II.1.

They note that evaluating reproduced sound quality necessitates higher

demarcation of perceptual attributes than for live sound because spatial

representations in reproduced sound are often intentionally fictional, not purposed

to accurately depict the physical world. Their fundamental findings are that

attributes referring to space are judged differently from those that deal with the

sources; perception of room properties might be perceived in two

dimensions—one which leads to a sense of being in the room, and another which

deals with room characteristics, such as size; and spatial dimensionality can be

globally categorized into dimensions of width, sensations of being present in the

room, and distance to the source. They make the suggestion that the width
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dimension observed in their studies might be similar to the ASW of natural

acoustics, and that presence in the room might be similar to LEV.

Recorded Music

For research in natural acoustics and audio quality, there is an implicit need

to understand how spaciousness affects the quality of their respective systems. An

underlying similarity exists between these goals and the ones of this paper. But,

importantly, the objectives of this paper diverge from those fields in that here the

reproduced content is under evaluation, rather than the reproducing system.

This paper borrows from the literature of both fields for identifying salient

spatial dimensions, and in doing so, focuses on three relations between listener and

music—the source group relation, the environment relation, and the global

relation. These embody 3 of the 4 basic categories that Rumsey (2002) declares in

his “scene-based” paradigm for subjective evaluation of spatial quality (the last

relates to individual sources). Specifically, the concept of spaciousness is modeled

in this paper as an aggregated interaction between the “width of the source

ensemble,” the “extent of reverberation”, and the “extent of immersion” that a

listener perceives (Table II.2). At the outset, however, this paper makes no explicit

assumptions about the orthogonality of these dimensions. They may be perceived

in parallel, and perception of one may influence perception of the others.

The width of the source ensemble is a listener-source group relation. It

describes the listener’s perception of how widely the entire group of sources is

representative in the sound field, irrespective of any room characteristics. This

dimension lies closest to the “ensemble width” dimension in Table II.1 and is

believed to be similar to ASW. The extent of reverberation is a

listener-environment relationship, in which the listener perceives the overall

12



• The “width of the source ensemble” of a sound is how widely spread
the ensemble of sound sources appears to be.

• The “extent of reverberation” of a sound is the overall impression of
how apparent the reverberant field is.

• The “extent of immersion” is how much the sound appears to surround
one’s head.

Table II.2: Definitions of learning concepts.

reverberation of the room. This is most closely related “room sound level” in

Table II.1 and is believed to be one of the chief contributing factors to

LEV (Okano et al., 1998). The last dimension considered, extent of immersion, is

a global relation in which the listener perceives spaciousness as a macro

assemblage of micro factors and can be considered a combination of “source

envelopment” and “room envelopment.” The three dimensions have been chosen

for their simplicity, overlapping treatment in natural acoustics and audio quality

evaluations, and their monotonically increasing scene-based representation of

source, environment, and global scene.
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CHAPTER III

HUMAN PERCEPTION

In order to build a predictive function for spaciousness (Chapter V), a

reliable “ground truth” for spaciousness is needed. As such a ground truth has not

been previously established for evaluation of spaciousness in recorded music, this

work necessitated the creation and annotation of one. This chapter explains how

musical recordings were selected and segmented. It then describes two related

experiments in which humans were asked to rate musical recordings for

spaciousness. The results of the experiments are analyzed for statistical robustness.

Music Selection and Segmentation

All songs were selected from a single online music web site1. The web site

is a free service that allows musicians to disseminate their work to the public in

Mp3 format. As a large repository of free music, the web site allowed careful

selection of appropriate recordings. Music was picked with the following criteria

in mind: It should be representative of several genres; it should be unfamiliar, so as

to avoid bias by recognition; it should represent the major parts of a song, i.e.

verses, choruses, etc; the audio quality of the recordings should not be sub-par;

and it should encompass widely varying degrees of spaciousness.

In order to satisfy the first criterion, songs were selected from and equally

distributed across each of the popular genre categories on the site. These were:

“Alt/Punk,” “Classical,” “Electronic-Dance,” “Hip-Hop,” “R&B/Soul,” and

1Mp3 Music Downloads, http://www.mp3.com/
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“Rock/Pop.” The genre-label for each song had been selected by the artist who

uploaded the song. There was therefor high variability in interpretation of genre

across the songs. This was deemed as a positive side-effect, as it increased the

broadness of the data set’s genre representation.

None of the songs that were picked were commercially distributed on a

large scale. Therefor they were each likely to be unfamiliar to most listeners. In

order to satisfy the third criterion, a segment was chosen from each song so as to

fall into either a “verse,” “chorus,” or “bridge” section. Sections were determined

as verse if they contained novel lyrical content, and chorus sections were deemed

such if they contained repeated lyrical content. Any section that did not contain

lyrics or that encompassed a major shift in structure (e.g. a key change) was

deemed a bridge. Twice as many bridge sections were included as verses and

choruses so as to have a roughly equal number of lyrical and non-lyrical sections.

No song segments were chosen from the beginnings or endings of songs.

The third and fourth criteria were satisfied by careful screening of each

song amongst hundreds. If a song’s audio quality was comparable to that of a

commercially-distributed Mp3’s, it was marked as appropriate for inclusion. The

selection of songs that were chosen had varying degrees of source panning, from

monophonic to very wide, and many levels of auditory spatial cues. Each song

selection was segmented to be exactly seven seconds long, with a 50 ms fade-in

and fade-out to avoid clicks. The duration was chosen, by informal evaluation, to

be long enough to develop concrete impressions of spaciousness, yet short enough

to prevent much temporal variation in spaciousness within the excerpt.
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Experiment

Two experiments were conducted on the assembled database—one online

and one in a laboratory. The experiments were similar in nature and goal; the first

targeted a larger subject base, at the acknowledged cost of poorly controlled

experimental conditions. The second optimized experimental control at the cost of

subject pool size. The results of the second experiment were first used to

substantiate the quality of the results from the first experiment and were thereafter

combined with the results of the first experiment to finalize the annotated “ground

truth” data set of music recordings. The materials and methods of each are

explained below and followed by analysis.

Materials and Methods, Online Experiment

Subjects

Subjects were recruited by posting advertisements on nearly twenty online

forums for musicians and music producers. Specific forums were targeted so as to

recruit a high proportion of experienced listeners. The advertisement summarized

the nature of the experiment and instructed interested parties to visit the

experiment’s web site. The experiment was approved by the New York University

Committee on Activities Involving Human Subjects; by beginning the experiment,

the participants acknowledged informed consent of the experiment.

There were 78 total participants across both studies. Their demographic

data is summarized in Table III.1. Online participants, of which there were 58,

varied in age from approximately 18 to 65 years of age and were distributed across

19 countries. They had varying degrees of experience regarding working or
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studying in a music related field and were dispersed in the number of hours a day

they spent listening to music.

Experimental Conditions

Before participants began the online experiment, they were informed that

they were to use headphones. The first screen encountered (after entering some

basic personal information) was a headphone calibration screen, where a series of

simple tones were played to facilitate volume adjustment.

The next four screens were designed to train the participant for the

experiment (see Appendix A for screen shots). First, a definition of the term

“spatial attributes” was given. Next, participants were informed of which

components in the sound field they were to listen for. Then, explicit definitions of

the attributes they were to rate were given. For these screens, participants were

asked to listen to a non-musical mixture of sources (a room of applause) in order

to focus their hearing. This training phase was designed to give participants time

to familiarize themselves with the concepts and focus their listening on a simple

stimulus. The nonmusical recordings exhibited characteristics of the spatial

dimensions but, to avoid pre-biasing their judgments of spaciousness, participants

were not told how spacious the recordings were to be perceived. Finally, after

training, a sample page with a real musical example was given.

Subjects were then asked to rate, on a bipolar 5-ordered Likert scale from

“Less” to “Neutral” to “More,” each of the dimensions for each test song.

Participants were allowed easy access out of the experiment at any time via a

button in the corner of the screen. An informational button activated a pop-up

screen with the term definitions, in the case that a participant needed to be

reminded. The experiment proceeded until all 50 song excerpts were played, or the

17



Online Laboratory
Gender M 45 13

F 13 7
Age Range 18-25 21 13

26-35 23 7
36-45 5 0
46-55 5 0
56-65 4 0

Country of Res. US 40 20
Non-US 18 0

Native English Speaker Y 46 17
N 12 3

Work in Music Y 35 20
N 23 0

Years in Musical Field <5 6 7
5-10 13 7
11-20 4 5
21-30 5 1
31-40 6 0
N/A 24 0

Hours Listening/Day <.5 1 2
.5-1 11 2
1-2 14 8
2-4 18 7
4-8 11 1
8-12 1 0
>12 2 0

Usually Listen Through Headphones 14 9
Headphones & Speakers 28 6
Speakers 16 5

Critical Listening Ability 1 N/A 1
2 N/A 1
3 N/A 3
4 N/A 8
5 N/A 7

TOTAL PARTICIPANTS 58 20

Table III.1: Demographics of subjects from the two experiments.
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participant exited. The order of the songs was randomized so as to eliminate any

order bias across participants. A web browser cookie-tracking mechanism

prevented any subject with their browser cookies enabled from participating more

than once.

Materials and Methods, Laboratory Experiment

Subjects

Subjects were recruited by posting advertisements on several email lists

targeted to music technology and music performance university graduate and

undergraduate students. The advertisement summarized the experiment and

offered a small compensatory fee for completing the experiment. A total of 20

subjects were recruited for this experiment. The experiment was approved by the

New York University Committee on Activities Involving Human Subjects; before

beginning the experiment, signed consent forms were obtained.

The subject pool’s demographics (see Table III.1) were rather

homogenized compared to the online experiment. Participants were distributed

over a smaller age range, they were all US residents, and they were each active

workers in a music related field. These subjects were asked to rate their level of

critical-listening ability on a scale of 1 to 5. Most subjects rated themselves highly,

at 4 or 5.

Experimental Conditions

The experimental conditions were very similar to the ones in in the online

experiment, with a few key differences. These participants were compensated; in

order to receive their payment, they were required to rate all 50 song excerpts in
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the data set. All participants took the test (at staggered times) in the same room

using the same model of high-fidelity open back headphones, Sennheiser HD650.

In addition, participants had the benefit of an experiment investigator on hand to

precisely answer questions about the terms in the experiment. The average time it

took for laboratory subjects to complete the experiment was roughly 30 minutes.

Post-Processing and Outlier Removal

The results of the two experiments were combined into one data set,

providing 2,523 ratings over 50 songs and three dimensions of spaciousness.

Ratings were transformed from a Likert space to a numerical space by assigning

the 5-ordered response categories integer values of -3 to 3. Any rating for a song

and dimension that exceeded three standard deviations was deemed an outlier and

removed from the data set. Additionally, any participant that had outliers for more

than one song in a dimension was removed entirely from the dimension. In total,

119, 140, and 128 ratings were removed from the width, reverberation, and

immersion dimensions respectively. After outliers were removed, the ratings for

each dimension were standardized to zero mean and unit variance. By doing so,

the trends of the ratings for each dimension were preserved, while at the same time

shifting them into a standardized space for easy cross-comparison. Figure III.1

shows the sorted mean value and standard deviation in response for each song for

the three standardized dimensions. It can be seen that, after standardization,

responses were skewed to the negative range, reflecting compensation for a larger

quantity of positive responses. It is not clear if this is due to a tendency for

subjects to rate selections more positively, or if this reflects the true nature of the

distribution of spaciousness in the data set.
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Figure III.1: The means and standard deviations of ratings for each song for each
dimension of spaciousness. The songs are sorted by ascending mean response, and
each dimension has been standardized for easy comparison.
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Results

Pair-Wise T-Tests

A pair-wise T-test was computed for each song and each dimension to test

the null hypothesis that the average ratings for the laboratory and online

experiments share the same means. Since different experimental conditions were

being compared, the p values were calculated assuming unequal variance,

implementing Satterthwaite’s approximation for standard error. The results are

shown in Table III.2. The null hypothesis can be rejected at a 99% confidence level

for only 2 songs, highlighted in grey.

Similar T-tests were conducted, per dimension, on the entire data set

comparing three different demographics. The first was subjects who listen to more

than 4 hours of music a day versus those who don’t. The null hypothesis could not

be rejected for any songs or dimensions. The second test was between subjects

who work or study in a music-related field versus those who don’t. In that test,

there was a single song in the immersion dimension which was deemed to not

share the same mean between populations. In the third test, those who usually

listen to music through headphones were compared to those who usually listen to

music through speakers. In this case, there were two instances of a rejected null

hypotheses, both in the immersion dimension. These three tests were conducted at

the 99% confidence level and with an equal variance assumption.

File Width Rev Imm

bridge 10 Classical 0.852 0.858 0.923

bridge 11 Classical 0.655 0.889 0.897

bridge 11 ElecDance 0.592 0.108 0.494

bridge 11 RnBSoul 0.541 0.785 0.076
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File Width Rev Imm

bridge 12 Classical 0.678 0.247 0.137

bridge 12 HipHop 0.976 0.066 0.034

bridge 13 AltPunk 0.157 0.835 0.001

bridge 13 HipHop 0.363 0.606 0.067

bridge 14 Classical 0.718 0.188 0.365

bridge 15 Classical 0.837 0.373 0.699

bridge 16 ElecDance 0.413 0.425 0.064

bridge 18 Classical 0.409 0.877 0.707

bridge 18 ElecDance 0.379 0.102 0.550

bridge 1 ElecDance 0.150 0.194 0.846

bridge 22 Classical 0.833 0.150 0.540

bridge 2 RnBSoul 0.544 0.602 0.024

bridge 2 RockPop 0.018 0.233 0.411

bridge 3 AltPunk 0.534 0.165 0.307

bridge 3 Classical 0.685 0.256 0.751

bridge 5 RnBSoul 0.290 0.346 0.994

bridge 5 RockPop 0.123 0.247 0.294

bridge 6 HipHop 0.092 0.112 0.178

bridge 7 AltPunk 0.965 0.753 0.334

bridge 8 RockPop 0.441 0.227 0.144

bridge 9 RnBSoul 0.238 0.702 0.156

bridge 9 RockPop 0.771 0.523 0.032

chorus 10 AltPunk 0.536 0.818 0.439

chorus 11 HipHop 0.229 0.293 0.607

chorus 11 RockPop 0.833 0.462 0.845

chorus 12 AltPunk 0.849 0.375 0.121
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File Width Rev Imm

chorus 14 HipHop 0.176 0.427 0.485

chorus 20 ElecDance 0.933 0.605 0.119

chorus 2 HipHop 0.067 0.160 0.123

chorus 3 ElecDance 0.537 0.014 0.001

chorus 4 RockPop 0.665 0.242 0.181

chorus 6 AltPunk 0.852 0.787 0.219

chorus 7 RnBSoul 0.163 0.557 0.977

chorus 8 RnBSoul 0.321 0.576 0.034

verse 10 RnBSoul 0.734 0.269 0.362

verse 14 ElecDance 0.700 0.539 0.337

verse 15 ElecDance 0.190 0.406 0.143

verse 1 AltPunk 0.139 0.197 0.382

verse 1 HipHop 0.429 0.705 0.490

verse 3 RockPop 0.583 0.195 0.316

verse 4 AltPunk 0.876 0.538 0.313

verse 5 HipHop 0.144 0.257 0.735

verse 6 RnBSoul 0.222 0.381 0.981

verse 6 RockPop 0.353 0.513 0.305

verse 9 AltPunk 0.307 0.616 0.862

verse 9 ElecDance 0.832 0.481 0.045

Mean 0.499 0.426 0.389

Table III.2: p values calculated from pair-wise T-tests between online and labora-
tory experiments for each song and dimension. The null hypothesis is rejected at
the 99% confidence level for two songs in the immersion dimension (highlighted in
grey). The average of all T-tests for each dimension is shown at the bottom.
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Width Rev Imm
Laboratory 12.74 8.17 10.31
Online 17.79 7.39 9.49
All 29.66 14.59 18.74

Table III.3: F-values calculated for each dimension for each experiment and for
both experiments.

Width-Rev Width-Imm Rev-Imm
R 0.3186 0.8745 0.5679

Table III.4: Pearson’s correlation coefficient R for averaged ratings between dimen-
sions.

F-Statistic for Each Dimension

It was important to determine if the ratings between songs, for each

dimension, were statistically different from each other. The F-test, which is the

ratio of between-group variability to within-group variability was conducted on

each dimension, the groups being the songs. A higher F-value indicates greater

distance in ratings between songs. F-values were calculated independently for

each experiment and for the data set comprising both experiments2. The results of

the test are shown in Table III.3.

Correlation Between Dimensions

Finally, a measure of the cross-correlation in ratings between dimensions

was needed. The subjective ratings were averaged for each song, and the Pearson’s

correlation coefficient R was calculated between dimensions. These coefficients

are reported in Table III.4.

2The calculation of the F-value is dependent on the sample size. The F-value
for the entire data set is therefor not meant to be compared directly to the F-values
for the online and laboratory subsets.
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Discussion

The inter-experiment T-test was important to determine if the the online

experiment was robust compared to the laboratory experiment. It can be expected

that the ratings in the online experiment would be less stable, as there was no way

to control the experimental conditions for each participant. In fact, the average

variance per song was consistently lower in the laboratory experiment. Only two

instances out of 150 were rejected as sharing the same means between

experiments. This is promising evidence that the full data set, including noisier

data collected online, can be reliable for prediction of spaciousness. The additional

T-tests were included to test if any specific variability would arise from

demographic factors. It can be hypothesized that ratings from those who have

more listening experience would be statistically different from those who have

less. Again, the data set proves fairly robust with a statistical difference arising in

only one instance (for a comparison between those who work and those who don’t

work in music). It may may be questioned whether subjects would rate songs

consistently if presented the same song more than once. However, this analysis

was deemed beyond the scope of the experiments’ purpose. Additionally,

enforcing multiple presentations of the same song would risk increased ear fatigue

for the subjects.

One concern of the subjective experiments is whether the constraint of

headphones would adversely affect the reliability of ratings. Headphone-listening

can inhibit perceived externalization, a factor that might negatively affect

perceived spaciousness. However, this paper aims to investigate the spaciousness

of recorded music. In order to do so, any unrelated environmental acoustic factors

of the listening environment must be eliminated from the experimental framework.

If headphone-inhibited externalization affects perceived spaciousness, it can be
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hypothesized that subjects that listen to music predominantly through headphones

will be better-adapted to perceive differences in spaciousness. Therefor, T-tests

were conducted on that population against participants that predominantly listen to

music through speakers. The T-tests indicated only two instances, again for the

immersion dimension, of a rejected null hypothesis. Collectively, the results of

these T-tests indicate a robust data set for prediction tasks.

The F-statistics reported also indicate a robust data set. The p values of the

group song means (not reported here) for each dimension indicated that they were

statistically significant. The F-values, from which the p values are calculated,

show that the width dimension has the greatest inter-song distance in rating

variance, while the reverberation dimension has the least inter-song distance.

Finally, the R values of inter-dimensional correlation gives us some

indication of whether the dimensions are perceived independently. Because width

and immersion are highly correlated, it might be said that listeners perceive the

two dimensions similarly. Or, conversely, it might be that production decisions that

lead to wider mixes also lead to similar decisions to increase, in parallel, the extent

of immersion. Similarly, the low width-reverberation correlation might reflect true

orthogonality of dimensions, or it might be influenced by higher-level production

choices.
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CHAPTER IV

OBJECTIVE MEASUREMENT

Two independent mathematical models for two attributes of produced

music that might correlate with the way humans perceive the spaciousness of

recorded music are proposed here. Spaciousness is quantitatively modeled as a

function of (1) the width of the source ensemble in a stereophonic field and (2) the

level of overall reverberation in a musical sample. The models consider the

stereophonic digital signal, rather than reproduction format or listening

environment. The models are validated in a controlled experimental framework.

Source Width

This work is concerned with modeling components of music production

that may be attributable to spatial perception for stereophonic music. As shown in

Chapters II an III, music may be perceived as more or less spatial based upon the

perceived wideness of sources. This model, using the azimuth discrimination

strategy reported by Barry, Lawlor, & Coyle (2004) as its basis, blindly estimates

through L-R magnitude scaling techniques how widely a mixture of sources is

distributed within the stereo field. (The term azimuth is loosely used here to

describe the virtual placement of a musical source in the horizontal plane by

amplitude panning.) The source panning distribution model generates an

azimuthal histogram of sources, and a musical sample’s wideness of panning is

estimated by calculating the full width half maximum value of a gaussian curve

that is fit to the histogram.
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As in Barry et al., it is assumed that the stereo signal is the weighted sum

of J individual sources S j, such that:

xl(n) =
J

∑
j=1

wl j(n)S j(n)

and

xr(n) =
J

∑
j=1

wr j(n)S j(n)

(IV.1)

where xl and xr are the left and right signals, wl and wr are the left and right

weighting coefficients, and n are discrete time samples. The source signal weight

of J can also be represented as a left-right intensity ratio:

g j =
wl j

wr j

If g j can be estimated for each source, then the wideness of panning can be

estimated for the entire distribution of sources. To do this, phase cancellation is

used to estimate panning intensity ratios for signal spectra. First, a set of arbitrary

scaling coefficients is created:

g(i) = i× 1
β

i = {0,1,2, . . . ,β}
(IV.2)

where i is an azimuthal index, β is the azimuthal resolution for each channel, and

both are integer numbers. Then, the magnitude spectrograms of the signals are

calculated, |Xl| and |Xr|, and arrays of frequency-azimuth planes, Azl and Azr are

built. For every FFT frame m, N/2 frequency bins of each channel are scaled and
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subtracted from the other channel by the scaling coefficients g:

Azm
l (k, i) = |Xr(k)−g(i) ·Xl(k)|

Azm
r (k, i) = |Xl(k)−g(β − i) ·Xr(k)|

(IV.3)

where k is the frequency bin index, and N and M are the length of the FFT analysis

window and number of FFT frames, respectively. The redundant azimuthal bin

Azm
r (k,0) is discarded and the two arrays are concatenated to form array Azm(k,u)

with azimuthal indices u = [1,2, . . . ,(2×β −1)].

Only the maximal bins are of interest, so Az is filtered as follows:

Âzm(k) =

 max(Azm(k))−min(Azm(k)) i f Azm(k) = max(Azm(k))

0 otherwise
(IV.4)

From here, an azimuthal histogram of the analysis signal is built by summing the

azimuthal bin values across all frames and all frequencies and weighting them by

their indices:

HÂz(u) = u

(
M−1

∑
m=0

N/2−1

∑
k=0

Âzm(k,u)

)
(IV.5)

Figure IV.1 shows azimuthal histograms for center-panned and a

wide-panned distributions of sources, along with their estimated distributions. As

can be seen, the azimuthal histograms tend to approximate normal distributions.

When sources are more focused toward the center of the stereo field, the

distribution exhibits less standard deviation. When sources are wider panned, the

standard deviation is higher. The width of a statistical distribution with a single

peak can be simply characterized by its Full Width Half Maximum (FWHM)

value, or the distance between two half-maximal points in the distribution. The

extent of source panning is estimated by calculating the FWHM of the data as if it
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Figure IV.1: Source width estimation for center- and wide-panned guitars amongst
a mixture of sources. Frame histograms have been fit with a gaussian curve and
their Full Width Half Maxima are calculated to estimate α . Note: Y axes are not
the same scale.

were a normal distribution and normalizing it by the total azimuthal resolution:

α =
µ(HÂz)±σ(HÂz)

√
2 ln 2

2×β −1
(IV.6)

Inspection of Figure IV.1 reveals that the gaussian fit for the left figure is wider

than for the right, indicating a wider ditribution of sources.

Reverberation

In this section, a model for the blind estimation of the total reverberation of

a musical sample is proposed. Reverberated musical sounds might be less linearly

predictable than non-reverberated sounds, as uncorrelated signal causes spectral

whitening in the temporal and frequency domains. As such, the residual of a linear

predictor is used as the engine for the estimations. Linear prediction has been used

previously in related applications such as blind de-reverberation (Gillespie,
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Malvar, & Florencio, 2001) and source separation of speech (Kokkinakis, Zarzoso,

& Nandi, 2003).

The model begins by mono-summing the input audio signal. If xl and xr

are the left and right channels, then x = (xl + xr)/2. Then, p linear prediction

coefficients are generated on non-overlapping blocks of audio and an excitation

signal is filtered with the linear prediction coefficients:

x̂ml pa(n) = y(n)−a1y(n−1)−·· ·−apy(n− p) (IV.7)

where ml pa is the linear prediction analysis frame index, n is a discrete time

sample, ai are the linear prediction coefficients (i ∈ [0, p]), and y is an excitation

signal. The residual is calculated from the linear predictor and the frames are

concatenated:

e(n) = x(n)− x̂(n) (IV.8)

As can be seen in the top graphs of Figures IV.2 and IV.3, the spectrum of

the residual has plenty of high-frequency energy. The envelope of the residual is

characterized as:

êmenv =
∑

Nenv−1
n=0 |emenv(n)|

2Nenv
(IV.9)

where menv is the envelope frame index and Nenv is the size of the analysis window

of the residual. As the smoothing window effectively down-samples the data, it is

up-sampled with an interpolating filter by a factor of η to facilitate further

processing. The up-sampled residual envelope is then transformed into the

frequency domain and its log magnitude power is calculated so that

Êm f f t = 20 · log(|Êm f f t |), where m f f t is the FFT frame index. The middle graphs

of Figures IV.2 and IV.3 show that the high frequency spectra of the envelopes of

the residual for the non reverberated signal contain more power than for the

reverberated signal. In order to characterize this feature, an arbitrary power
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Figure IV.2: Comparison graphs for a non reverberated signal. Top: Linear pre-
dictor residual and its envelope. Middle: Frequency transform of the residual en-
velope. Bottom: Normalized maximum frequencies below power threshold γ and
their mean, ρ .

threshold γ is decided upon. For each FFT frame of Ê, the highest frequency bin

index which contains approximately γ dB of power is found. The mean of the

resulting curve is calculated:

ρ =
∑

M f f t−1
m f f t=0 max(Êm

f f t(n)≤ γ)

M f f t
(IV.10)

33



−1

−0.5

0

0.5

1

A
m

p
li

tu
d

e
F

re
q

u
en

cy
(k

H
z)

 

 

0

1

2

3

4

5

−50

−40

−30

−20

−10

0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.25

0.5

0.75

1

Tim e (s)

R
ev

er
b

E
st

.
(ρ

)

ρ = 0.85

dB

Figure IV.3: Comparison graphs for a reverberated signal. Top: Linear predic-
tor residual and its envelope. Middle: Frequency transform of the residual enve-
lope. Bottom: Normalized maximum frequencies below power threshold γ and
their mean, ρ .
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A normalization constant ν derived from the signal sampling rate ( f s), the

hop size of the envelope follower (Nehop), and η is created:

ν =
f s

2×Nehop×η
(IV.11)

Finally, the output is normalized and subtracted from 1 so that an increasing

estimator value indicates an increasing amount of reverberation:

ρ = 1−ρ/ν (IV.12)

The bottom graphs of Figures IV.2 and IV.3 show ρ , the reverberation

estimation for an analysis frame. Again, the figures represent two similar music

clips. In the first, the guitars have no artificial reverberation added. In the second,

artificial reverberation with a wet mix setting of -10 dB has been added to the

guitars. It can be seen that the estimated reverberation is higher for the second.

Experiment

The models presented in the previous two sections were tested

independently in controlled experiments. The estimators were each tested on

multiple data sets; and each data set was tested under two conditions. The data sets

and experimental methods are explained below, followed by results and a

discussion.
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Materials and Methods

Data Sets

Each data set consisted of mixed control and test tracks of musical audio.

Data Set 1 was the chorus of a pop song, approximately 13 s in length. The

instrumentation consisted of drums, bass, percussion, male vocals, electric guitar,

and acoustic guitar. Data Set 2 was the chorus of a hip hop song, approximately

22 s in length. Its instrumentation consisted of kick drum, snare drum, percussion,

bass, piano, synthetic horns, and assorted samples and sound effects. The last data

set, Data Set 3 (approximately 13 s), was an electronica excerpt. Its tracks were

comprised of several percussive loops, synthetic bass, several synthesizer pads, a

synthesizer lead, and some effects tracks.

Each of the audio tracks for each data set were categorized as either “test

tracks” or “control tracks.” In the first experimental condition, the test tracks for

Data Sets 1, 2, and 3 were acoustic guitar and electric guitar; doubled male lead

vocal; and synthetic bass, respectively. In the second condition, the test tracks of

Data Sets 1, 2, and 3 were acoustic guitar and electric guitar; snare drum; and lead

synth pad, respectively.

Digital Audio Workstation (DAW)

The experimental conditions were implemented on a popular

consumer-brand DAW. The workstation had virtual pan-pots for controlling the

placement of sound sources. Panning values reported below reflect the MIDI

numbers assigned to the virtual pan pots. For example, a MIDI value of “64”

represents a center panned channel, and “127” a hard right panned channel.
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Reverberation was implemented with a virtual insert on the DAW. A

popular consumer-brand reverberation software plugin was used on a “warm

space” setting with a reverb decay time of approximately 3 s and a pre-delay of

approximately 16 ms.

Methods

In the first condition, two test tracks were iteratively panned from opposite

outermost to center positions. The panning positions of the control tracks

remained static in all iterations. The control tracks of all data sets were mostly, but

not entirely, center-panned.

In the second condition, the wet mix control of the reverb plugin was

iteratively lowered in 6 dB decrements on one or two test tracks. The reverb type

remained constant through all iterations and for all data sets. The dry mix

remained constant in all iterations. Reverb was monophonic in this experiment.

(This would not affect results, as the estimator mono-sums the input signal.) Some

control tracks were reverberant, either from the acoustic environment they were

recorded in, or from preprocessing on mix stems. However, the extent of

reverberation on the control tracks remained constant in all iterations. The lead

synth pad in Data Set 3 had been preprocessed with synthetic reverberation; the

track was tested, however, under the same conditions as the other test tracks.

All experiments were conducted with the parameters described in

Tables IV.1 and IV.2 on 2-second windows of stereophonic music with a 50%

overlap.

37



VARIABLE SYMBOL VALUE
sample rate f s 44,100 Hz
FFT length N 2048 samples
FFT overlap hanning
FFT overlap 50%
channel azimuthal resolution β 20

Table IV.1: Variable symbols and values used for source width estimation α .

VARIABLE SYMBOL VALUE
sample rate f s 44,100 Hz
linear prediction frame size N 2048 samples
linear prediction window boxcar
linear prediction overlap 0%
number of linear prediction coefficients p 20
excitation signal y white noise
envelope follower frame size Nenv N/2
envelope follower window hanning
envelope follower overlap 50%
up-sample factor η N/16
FFT length N f f t N
FFT window hamming
FFT overlap 87.5%
power threshold γ -35 dB

Table IV.2: Variable symbols and values used for reverberation estimation ρ .

Results

Figure IV.4 shows the results of the source width estimator on the the three

data sets. All data sets show decreasing estimations for decreasing panning widths.

Additionally, the estimations are consistent with each other in the temporal

domain. The estimations show relative values across sets that were consistent with

the relative mixing intensities of the test tracks amongst the control tracks. Note

that in Data Set 3, the range of estimation values is highly compressed relative to

the other data sets. (The Y axis of the figure has been expanded to improve

resolution.)
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The results of the reverberation estimator are depicted in Figure IV.5. All

data sets show decreasing estimations for decreasing reverberation. However, the

estimator loses its ability to detect changes in reverberation at different levels for

different data sets. For each data set, the figure shows the last iteration at which the

estimator clearly predicted a change in reverberation level. For Data Set 1, this

was at a wet mix level of -34 dB. For Data Set 2, it was -28 dB, and for data Set 3

-22 dB. The estimator’s predictions in the temporal domain do not respond linearly

with decreasing reverberation. For instance, at about 12 s in Data Set 2, a decrease

in reverberation is estimated at -28 dB, but a slight increase is estimated at -22 dB.

Test Set 3 performed worse than other test sets, detecting considerably less change

in reverberation level than the other test sets.

Discussion

The temporal consistency of the source width estimator can be expected, as

a change in intensity ratio at sample n should not affect intensity ratios in later

frames. Likewise, it is possible to explain the lack of temporal consistency for the

reverb estimation. Decreasing the wet mix parameter of a reverb with 3 s of reverb

decay would probably affect the following analysis frames.

The “compression” of panning width estimation noted for Data Set 3 is

probably due to the spectral characteristics of the test track, which was a bass. An

instrument with fewer high frequency components would not be well represented

in the linear time-frequency histogram that the estimator uses. There was a

wide-panned hi hat loop in Data Set 3 that stops playing towards the end of the

section. This is reflected in the graph, as the estimator slopes downward after

approximately 8 s. The estimator was thus highly dependent on instrumentation

with stronger high-frequency spectra. It might be appropriate to weight the
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Figure IV.4: Source width estimation of three experimental data sets. Top: Data
Set 1; Middle: Data Set 2; Bottom: Data Set 3. Note: Bottom graph is not to same
scale as others.
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Figure IV.5: Reverberation estimation of three experimental data sets. Top: Data
Set 1; Middle: Data Set 2; Bottom: Data Set 3.
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frequency component of the time-frequency histogram logarithmically, so that low

frequency components are more accurately represented.

Although the reverberation estimator ceased to detect changes in

reverberation at different wet mix levels for different data sets, informal subjective

listening tests revealed that reverberation was less perceivable in those data sets.

For instance, the test and control tracks of Data Set 3 had been preprocessed with

more reverberation than any of the other data sets, making additional reverberation

more difficult to distinguish. In general, Data Sets 1 to 3 were increasingly dense

in instrumentation and fluctuations of loudness. Despite absolute wet mix values

across all data sets, reverberation was perceived less in denser sets. Further

investigation needs to be done on the relationship between perception of

reverberation and these other parameters.

It is important to note that the test conditions for reverberation estimation

excluded multiple types of reverberation. The spectral and temporal characteristics

of reverberation can vary wildly across many reverberation types. Different

reverberations would almost certainly affect the results of these experiments.

Further investigation needs to be done on the dependencies of the model upon the

spectral and temporal characteristics of reverberation.

42



CHAPTER V

MACHINE PREDICTION

This chapter details the formulation of a mapping function between the

ratings of the perceived spatial attributes obtained in Chapter III and objective

measurements of digital audio, including the ones explained in Chapter IV. Since,

to my knowledge, there are no extant objective measurements of recorded music

for the concept of “spaciousness,” the function must be newly created by machine

learning. With the exception of listener experience, perceived attributes discussed

in literature are consistently related to sound sources or their environment, rather

than personal properties like gender. These are universal in nature and therefor

support a model which maps spaciousness to objective measurements of the

recorded signal. In the following sections, the components of the machine learning

algorithm are discussed, followed by the results of an experiment which tests its

validity.

Design of Machine Learning Function

A block diagram for building the objective-to-subjective mapping function

is shown in Figure V.1. At the beginning is a large feature space that objectively

describes the music recordings. At the end is a support vector machine that needs

optimization to accurately predict subjective ratings. In between, a

correlation-based feature selection and subset voting scheme are used to narrow

down the feature space. Then, a grid search for the best parameterization of the
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Figure V.1: Block diagram for building and optimizing the mapping function.

support vector regression function is conducted. Each stage is described in detail

below.

Feature Generation

Features are descriptors of the audio signal obtained by signal filtering and

analysis. By reducing an audio file to a set of audio features, one hopes to extract

the most meaningful properties of the audio signal for the task at hand. For this

project, a verbose set of attributes was batch-generated on the left-right difference

signal of the data set using the MIR Toolbox (Lartillot, Toiviainen, & Eerola,

2008) and the two objective measurements reported in Chapter IV. The

batch-generated features include many that are widely used, like MFCCs, Spectral

Centroid, and Spectral Flatness. None of the features in the MIR Toolbox are

intended to extract spatial features of a musical signal, like the ones presented in

this paper. However, they are all initially included as it is unknown what

characteristics of a signal might lead to perceived spaciousness.

For most features, the recording was frame-decomposed and feature

extraction was performed on each frame. Some features, such as Fluctuation, were

calculated on the entire segment. The frame-level features were summarized by

their mean and standard deviation. Additionally, their periodicity was estimated by

autocorrelation and period frequency, amplitude, and entropy was calculated. The
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Category Feature
Dynamics RMS energy
Rhythm Fluctuation Peak Position*, Fluctuation Peak Magnitude*, Fluc-

tuation Spectral Centroid*, Tempo, Tempo Envelope Auto-
correlation Peak Position, Tempo Envelope Autocorrelation
Peak Magnitude, Attack Time, Attack Time Onset Curve Peak
Position*, Attack Time Onset Peak Magnitude*, Attack Slope,
Attack Slope Onset Curve Peak Position*, Attack Slope Onset
Curve Peak Magnitude*

Timbre Zero-Cross Rate, Spectral Centroid, Brightness, Spectral
Spread, Spectral Skewness, Spectral Kurtosis, Roll-Off (95%
threshold), Roll-Off (85% threshold), Spectral Entropy, Spec-
tral Flatness, Roughness, Roughness Spectrum Peak Position,
Roughness Spectrum Peak Magnitude, Spectral Irregularity, Ir-
regularity Spectrum Peak Position, Irregularity Peak Magnitude,
Inharmonicity, MFCCs, ∆ MFCCs, ∆∆ MFCCs, Low Energy*,
Low Energy RMS, Spectral Flux

Pitch Salient Pitch, Chromagram Peak Position, Chromagram Peak
Magnitude, Chromagram Centroid, Key Clarity, Mode, Har-
monic Change Detection

Spatial Wideness Estimation*, Reverberation Estimation*

Summary Mean, Standard Deviation, Slope, Period Frequency, Period
Amplitude, Period Entropy

Table V.1: List of audio features and their categories. Features with an asterisk (*)
only had their mean calculated.

size of the final feature space extracted from the recordings was 430 dimensions.

The entire set of features, which can be sub-divided into categories of Dynamics,

Rhythm, Timbre, Pitch, and Spatial, is listed in Table V.1.

Pre-Processing

The feature space was normalized to the range [0,1] and transformed into a

principal components space. The non-principal components that accounted for the

5% least variance in the data set were discarded, and the data set was transformed

back to its original symbolic attribute space. This transformation and reduction of
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data by principal components analysis is an often-used means of performing data

cleanup on a feature space (Witten & Frank, 2005).

Feature Selection

For each target concept, Correlation-Based Feature Selection (CFS) was

performed with a greedy step-wise forward search heuristic. CFS chooses

attributes that are well correlated to the learning target, yet exhibit low

intercorrelation with each other. CFS has been shown to be good for filtering out

irrelevant or redundant features (Hall, 1999).

However, supervised attribute selection can over-fit attributes to their

learning concept when the same data set is used for training and testing (Miller,

2002). To minimize subset selection bias, a percentile-based voting scheme with

10 × 10-fold cross-validated attribute subset selection was performed. Multiple

cross-validation (CV) is a robust way of estimating the predictive power of a

machine when only a small data set is available. As each fold generated a different

feature set, some features were selected more often than others. For each run,

features were placed in a percentile bin based upon how many times that feature

had been selected. Up to 11 new data sets with monotonically increasing feature

spaces were generated in this way.

Each feature space was then used to learn a non-optimized support vector

regression algorithm for each dimension. The subset that performed the best for

each learning concept was voted as the final subset for further system optimization

and training.
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Regression

For each concept, a support vector regression model was implemented with

the the Sequential Minimal Optimization (SMO) algorithm in Smola & Schölkopf,

2004. Support vector machines have shown to generalize well to a number of

classification and regression tasks. Support vector machines implement a trade-off

between function error and function flatness. An error threshold ξ is selected

below which instance errors will be invisible to the loss function. A complexity

constant C preserves the flatness of the function and prevents it from over-fitting

the data. The higher the value of C, the more influence errors outside of ξ have

upon the function. A kernel function generalizes the model to nonlinear fits. The

SMO algorithm is a means of improving computational efficiency when analyzing

large data sets. The data sets that were used in this work were relatively small,

rendering SMO irrelevant to discussion.

The support vector model in this work employed a polynomial kernel,

K(x,y) = (< x,y > +1)p, chosen as the best in an informal kernel search. Support

vector machines perform, to some extent, similarly well independent of kernel

type if the kernel’s parameters are well-chosen (Scholkopf & Smola, 2001). In the

case of a polynomial kernel, the only parameter to choose is the polynomial

exponent, p. An exhaustive grid search for the optimal values of the support vector

machine complexity C and its kernel exponent p was conducted after the optimal

feature space had been selected. The value of ξ was set at 1×10−3 for the entirety

of this study.
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Figure V.2: Performance of non-optimized machine on monotonically decreasing
feature spaces.

Experiment

Materials and Methods

Data Set

The averaged responses per song from Chapter III were used to train and

test the learning algorithm after it was pre-processed as described above.

Computing Environment

All learning and training exercises were conducted on a Mac dual-core 2.4

GHz computer with 4 GB of memory on the Unix operating system. Machine

training and testing was conducted in Weka, an open-source computing

environment for machine learning (Witten & Frank, 2005).
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Methods

For each dimension of spaciousness, the best feature space was found by

using Multiple CV as described above. Then a systematic search for the support

vector parameterization that yielded the lowest error for each concept was

conducted. Success was evaluated by relative absolute error (RAE, explained in

“Results”). The model that yielded the lowest RAE was retained and tested a final

time, using Multiple CV, to obtain final results.

Results

The relative absolute error (RAE) was the primary error metric used to

evaluate success. However, several secondary metrics were incorporated in

evaluations, as well. RAE is the sum of all the errors normalized by the sum of the

errors of a baseline predictor. The baseline predictor, Zero-R, picks the mean value

of the test fold for every instance. An error of 0% would denote perfect prediction

and 100% would indicate prediction no better than chance.

The final test results are depicted in Table V.2. The mean absolute error

(MAE), which is dependent upon scale, was no more than 0.11 for any of the

predictors. The average MAE for the Zero-R predictor is shown for comparison at

the bottom of the table. All predictors had a correlation coefficient R of 0.73 or

higher to the actual values. An R value of 0.0 would denote a complete lack of

correlation between the predicted and actual values. The predictor for wideness of

source ensemble performed the poorest, but was still well above chance. By all

measurements of accuracy, the predictor for extent of reverberation performed the

best. Its coefficient of determination (R2) indicates that the function accounted

for 62% of the variance in the test set.
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Width Rev. Imm.
RAE(%) 62.63 67.20 64.36
MAE 0.11 0.10 0.11
R 0.73 0.79 0.76
R2 0.53 0.62 0.58
MAE (Zero-R) 0.19 0.17 0.18

Table V.2: The final mean absolute error (MAE), relative absolute error (RAE),
correlation coefficient (R), and coefficient of determination (R2) of the learning
machines. The MAE for a baseline regression function, Zero-R, is given for com-
parison. All results are averaged from Multiple CV.

Discussion

The predictive capability of each of the mapping functions was much better

than chance, as indicated by the RAE. The accuracies of the models suggest that

objective measurements of digital audio can be successfully mapped to new

dimensions of music perception. It is informative, however, to inspect the

performance of the intermediate stages of model design. Figure V.2 shows the

results of testing for the best feature space percentile. All predictors show two

local minima: Width at the 20th and 50th percentiles; reverberation at the 10th and

40th percentiles; and immersion at the 20th and 70th percentiles. This indicates that

there might have been more than one optimal feature subset percentile to use. In

every case, the percentile that yielded the lowest RAE for the algorithm was

chosen, without testing all local minima. The steepness of the error curves

between the 0 and 10th percentiles shows that simply using the entire feature set

without any feature selection would greatly inhibit the performance of the support

vector algorithm.

A summary of the final feature subset percentile used for learning each

concept is shown in Table V.3. While most features are probably not individually

useful, the correct combination of features is. Features that were selected for more
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Concept Features
(Percentile)

Width (50 %) Tempo Envelope Autocorrelation Peak Magnitude Period Fre-
quency, Spectral Flatness Period Amplitude, Wideness Esti-
mation Mean, Reverb Estimation Mean, ∆ MFCC Slope 5, ∆∆

MFCC Mean 11
Rev. (40 %) MFCC Mean 3, MFCC Period Entropy 3, MFCC Slope 3, ∆∆

MFCC Period Amplitude 13, Key Clarity Slope, Chromagram
Peak Magnitude Period Frequency, Harmonic Change Detection
Function Period Amplitude, Spectral Flux Period Amplitude, Pitch
Period Amplitude, ∆ MFCC Slope 10, ∆ MFCC Period Frequency
10, ∆ MFCC Slope 13

Imm. (20 %) MFCC Period Entropy 6, Spectral Centroid Period Entropy,
Tempo Envelope Autocorrelation Peak Magnitude Period Fre-
quency, Spectral Flatness Period Amplitude, Spectral Kurtosis
Standard Deviation, Wideness Estimation Mean, Reverb Esti-
mation Mean, Mode Period Entropy, Pitch Period Frequency, ∆

MFCC Slope 7, ∆ MFCC Slope 5, ∆ MFCC Slope 11, ∆ MFCC
Mean 11, ∆∆MFCC Mean 11

Table V.3: Selected feature spaces after running on non-optimized machine. Fea-
tures in boldface were picked for more than one learning concept.

than one learning concept are shown in boldface. Notably, the spatial estimators

for wideness and reverberation were automatically chosen for the tasks of

predicting source ensemble wideness and extent of immersion, but not for

estimation of reverberation. This may denote a non-optimized parameterization of

the reverberation measurement. The width and immersion dimensions shared the

most features in common; this is understandable, as these dimensions shared the

highest correlation among annotations (as reported in Chapter III). This may

indicate that the dimensions are highly similar, that subjects assumed them to be

the same, or that there exists a song-selection bias in the data set. Selected features

for all three concepts were largely from the Timbre category. It is interesting that

the reverberation predictor picked three features from the Pitch category. There are

no obvious explanations for this behavior, and it merits further investigation.
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The error surfaces for parameterizations of each of the machines is shown

in Figure V.3. These surfaces show the RAE for each value in the grid search for

optimal C and p values. It can be seen that the surfaces are not flat and that a

globally optimal parameterization can be found for each. Yet they depict few local

minima and are relatively smooth, suggesting that other parameter choices in

between the grid marks would not have significantly improved results. It is worth

noting that the flattest error surface, that for extent of reverberation, is also the one

that performed the best, indicating robustness against parameter choices.
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Figure V.3: Relative absolute error surface for machine parameter grid search of
kernel exponent p and machine complexity C.
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CHAPTER VI

CONCLUSIONS

This work presents a complete model for spaciousness in recorded music.

First, the concept of spaciousness was discussed in context of previous work in

other music-related fields. It was found that the spaciousness of a music recording

could be parameterized by the width of its source ensemble, its extent of

reverberation, and its extent of immersion—three dimensions which represent

listener-source, listener-environment, and listener-global scene relationships,

respectively. By doing so, each of these perceptual attributes could be studied

independently, and in tandem.

A newly annotated set of music recordings was generated along the three

dimensions of spaciousness. The annotations were compiled in two human subject

studies. The first was conducted on a large population, at the acknowledged cost of

experimental control. The second was conducted on a smaller population with

increased experimental control. The results of the second test were used to validate

the first. It was found, through pair-wise T-tests, that the first study was robust

enough to include with the second to compile a complete set of annotations.

Additionally, inter-popuation and inter-song T-tests showed that the data set was

robust against demographic variations and that the set of musical recordings were

statistically different from each other in ratings. It was concluded that the data set

would be sufficient for accurate machine prediction.

Two new objective measurements were proposed for measuring spatial

attributes of a recorded musical signal. The measurements predict the width of the
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source ensemble and the extent of reverberation in a musical signal, respectively.

Both algorithms were successfully validated in controlled experiments.

Lastly, a function was built to map the data set of music annotations to a

large set of signal descriptors, including the two novel spatial descriptors

introduced in this paper. Automatic feature selection was used in conjunction with

exemplar-based support vector regression to build a mathematical model of

spaciousness. The model was evaluated against the data set by Multiple CV and

found to predict spaciousness at levels much better than chance.

This paper therefor concludes that perceived spaciousness of musical

recordings can be effectively modeled and predicted along an arbitrary numerical

continuum. These findings are significant because spatial impression is an

important factor in the enjoyment of recorded music. Recording and mixing

engineers stimulate attention to music by manipulating spatial cues. Novel spatial

stimuli are often a major trait separating produced recorded music from strict

documentation of a recorded performance, especially in the popular genres. By

parameterizing an important perceived attribute of music and mapping it to

measurable quantities of digital audio, a meaningful way of accessing and

manipulating music is provided. By implementing a complete model of

spaciousness for recorded music, musicians have another means of executing

organization of sound. If we follow Varése’s definition of music, we may argue

that organizational capacity over sound is the single most important instrument of

composition a musician can exercise.

Future work in several areas will improve the efficacy of this model. First,

a larger data set, inclusive of more songs and human subjects will improve the

model. A second human subject study in which humans evaluate the machine

predicted values of spaciousness will bolster the model’s validity.

55



The width estimator will benefit from a new frequency weighting which

de-emphasizes the influence of higher frequency spectra. Further investigation into

the performance and parameterization of the reverberation estimator for different

types of reverbs is also warranted.

Lastly, this work examined one machine learning algorithm, support vector

regression. Future work will evaluate the performance of other machine learning

types, such as linear regression or support vector regression with different kernel

functions.
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Evjen, P., Bradley, J. S., & Norcross, S. G. (2001). The effect of late reflections
from above and behind on listener envelopment. Applied Acoustics, 62(2),
137–153.

Ford, N., Rumsey, F., & Bruyn, B. de. (2001, May). Graphical elicitation
techniques for subjective assessment of the spatial attributes of loudspeaker
reproduction – a pilot investigation. (Presented at 110th AES Convention,
Amsterdam, 12–15 May, Paper 5388)

Ford, N., Rumsey, F., & Nind, T. (2003a, Oct). Creating a universal graphical
assessment language for describing and evaluating spatial attributes of
reproduced audio events. (Presented at 115th AES Convention, New York,
10-13 October)

Ford, N., Rumsey, F., & Nind, T. (2003b, June 26-28). Evaluating spatial attributes
of reproduced audio events using a graphical assessment language –
understanding differences in listener depictions. In AES 24th international
conference, Banff.

Ford, N., Rumsey, F., & Nind, T. (2005, May 28-31). Communicating listeners’
auditory spatial experiences: a method for developing a descriptive language.
In 118th convention of the audio engineering society, Barcelona, Spain.

Furuya, H., Fujimoto, K., Young Ji, C., & Higa, N. (2001). Arrival direction of
late sound and listener envelopment. Applied Acoustics, 62(2), 125–136.

Gillespie, B. W., Malvar, H. S., & Florencio, D. A. F. (2001). Speech
dereverberation via maximum-kurtosis subband adaptive filtering.

Guastavino, C., & Katz, B. F. G. (2004, Aug). Perceptual evaluation of
multi-dimensional spatial audio reproduction. JOURNAL OF THE
ACOUSTICAL SOCIETY OF AMERICA, 116(2), 1105–1115.

Hall, M. (1999). Correlation-based feature selection for machine learning. Phd
thesis, University of Waikato, Department of Computer Science, Hamilton,
New Zealand.

Hanyu, T., & Kimura, S. (2001, Feb). A new objective measure for evaluation of
listener envelopment focusing on the spatial balance of reflections. Applied
Acoustics, 62(2), 155–184.

58



Keet, W. (1968). The influence of early lateral reflections on the spatial
impression. In Reports of the sixth international congress on acoustics, Tokyo.

Kokkinakis, K., Zarzoso, V., & Nandi, A. (2003, April). Blind separation of
acoustic mixtures based on linear prediction analysis. In 4th international
symposium on independent component analysis and blind signal separation
(ICA2003), Nara, Japan.

Kunej, D., & Turk, I. (2000). New perspectives on the beginnings of music:
Archeological and musicological analysis of a middle paleolithic bone “flute”.
In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music
(chap. 15). Cambridge, Mass.: MIT Press.

Lartillot, O., Toiviainen, P., & Eerola, T. (2008). Mirtoolbox [Computer program
and manual]. Internet web site. Retrieved 5/1/2009, from
http://www.jyu.fi/music/coe/materials/mirtoolbox

Levitin, D. J. (2002). Foundations of cognitive psychology: core readings.
Cambridge, Mass.: MIT Press.

Levitin, D. J. (2006). This is your brain on music: the science of a human
obsession. New York, N.Y.: Dutton.

Marshall, A. H. (1967). A note on the importance of room cross-section in concert
halls. Journal of Sound and Vibration, 5(1), 100–112.

Marshall, A. H., & Barron, M. (2001). Spatial responsiveness in concert halls and
the origins of spatial impression. Applied Acoustics, 62(2), 91–108.

Mason, R., Brookes, T., & Rumsey, F. (2005). The effect of various source signal
properties on measurements of the interaural crosscorrelation coefficient.
Acoustical Science and Technology, 26(2), 102-113.

Mason, R., Ford, N., Rumsey, F., & Bruyn, B. de. (2001). Verbal and non-verbal
elicitation techniques in the subjective assessment of spatial sound
reproduction. Journal of the Audio Engineering Society, 49(5).

Miller, A. J. (2002). Subset selection in regression. Boca Raton: Chapman &
Hall/CRC.

Morimoto, M., Fujimori, H., & Maekawa, Z. (1990). Discrimination between
auditory source width and envelopment. J Acoust Soc Jpn, 46, 449–457. (in
Japanese)

59



Morimoto, M. ., & Iida, K. . (2005). Appropriate frequency bandwidth in
measuring interaural cross-correlation as a physical measure of auditory source
width. Acoustical Science and Technology, 26(2), 179–184.

Morimoto, M., Jinya, M., & Nakagawa, K. (2007, Sep). Effects of frequency
characteristics of reverberation time on listener envelopment. Journal of the
Acoustical Society of America, 122(3), 1611–1615.

Morimoto, M., & Maekawa, Z. (1989). Auditory spaciousness and envelopment.
In Proceedings of 13th ICA.

Okano, T., Beranek, L. L., & Hidaka, T. (1998, Jul). Relations among interaural
cross-correlation coefficient (IACCE), lateral fraction (LFE), and apparent
source width (ASW) in concert halls. Journal of the Acoustical Society of
America, 104(1), 255–265.

Rumsey, F. (1998). Subjective assessment of the spatial attributes of reproduced
sound. In AES 15th international conference: Audio, acoustics and small
space, Copenhagen, Denmark.

Rumsey, F. (2002). Spatial quality evaluation for reproduced sound: Terminology,
meaning, and a scene-based paradigm. Journal of the Audio Engineering
Society, 50(9), 651-666.

Scholkopf, B., & Smola, J., Alexander. (2001). Learning with kernels: Support
vector machines, regularization, optimization, and beyond. Cambridge, MA,
USA: MIT Press.

Smola, J., Alex, & Schölkopf, B. (2004). A tutorial on support vector regression.
Statistics and Computing, 14(3), 199–222.

Suzuki, Y., & Takeshima, H. (2004). Equal-loudness-level contours for pure tones.
The Journal of the Acoustical Society of America, 116(2), 918-933.
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APPEDIX A

HUMAN SUBJECT STUDY INTERFACE

Figure A.1: Definitions for “spatial attributes.”
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Figure A.2: Instructions on components to listen for.
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Figure A.3: Instructions on how to rate spatial attributes.
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Figure A.4: Practice question.
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Figure A.5: Experimental question.
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