
SOS: Sonify Your Operating System

Andy M. Sarroff1, Phillip Hermans2, and Sergey Bratus1

1 Department of Computer Science
2 Department of Music

Dartmouth College, Hanover NH 03755, USA
sarroff@cs.dartmouth.edu

Abstract. The modern personal computer is capable of executing many
millions of instructions per second. Some of these instructions may cause
the computer to slow down, expose security vulnerabilities to the outside
world, or cause other undesirable behavior. It is impractical and unwieldy
to regularly probe the operating system’s kernel and analyze enormous
text files for detecting anomalous behavior. Yet the operating system is
a real-time agent that often exhibits identifiable activity patterns. Un-
der the right conditions humans are good at detecting temporal-acoustic
patterns. We therefore suggest a framework for sonifying important as-
pects of the operating system. Our architecture is lightweight, general-
izable to Unix-like systems, and open sourced. The system is built using
the ChucK sound synthesis engine and DTrace dynamic tracing library
yielding musical expressivity over operating system sonification.

Keywords: Sonification, operating systems, DTrace, ChucK, audio syn-
thesis.

1 Introduction

A modern personal computer is capable of executing many millions of instruc-
tions per second. While a user is casually browsing the internet, listening to
music, or writing a paper on their PC, the operating system kernel is managing
a continuous stream of instructions. Some of these include manipulating files
(e.g. opening, closing, reading, writing to files); controlling processes (e.g. load-
ing an application into memory); and device management (e.g. mounting a hard
drive). When a system is overwhelmed with instructions or when its memory
is over-utilized, a user may experience diminished responsiveness. Such situa-
tions may be frustrating, especially when the user is unaware of the causes for
unresponsiveness.

Whenever we are connected to a network, our PCs are constantly sending
and receiving messages from other computers. Sometimes we are explicitly aware
of this behavior. For instance when we browse the internet or check our email,
we are aware that our computer is connecting to the outside world. However
oftentimes our computers continue to send and receive data without our knowl-
edge. Our computer may be downloading large files from the “mother ship” (e.g.

2 Sarroff et al.

when the Mac OS downloads a system update from Apple’s servers). Or we may
have unwittingly left open a file sharing port that others are exploiting.

These are just a few scenarios in which important events are occurring in
the background of our computing environment. Such events may negatively im-
pact our interaction with the computer or worse, expose our personal data to
the world. It behooves us to have some awareness of the automatic processes
occurring regularly without our knowledge. Yet the instructions executed by the
operating system at any given time, most of which are benign, are unwieldy in
number.

There are many extant tools to analyze the operating system’s behavior. Most
of these require some degree of low-level knowledge about how the operating
system works. The usual mode of analysis for such systems is text. If one samples
the activity of a single process, they are likely to be inundated with several
thousands of nearly indecipherable lines of output. Figure 1 shows a snippet
of the textual output that is spewed by executing the command sample on a
running instance of the Google Chrome application from the terminal in a Mac
OS environment. There are over 1,200 lines of text associated with a 10-second
sample. Most of these lines are unintelligible to those without expert knowledge
of the Mac OS.

1 Analysis of sampling Google Chrome (pid 304) every 1 millisecond
2 Process: Google Chrome [304]
3 Path: /Applications/Google Chrome.app/Contents/MacOS/Google Chrome
4 Load Address: 0xc9000
5 Identifier: com.google.Chrome
6 Version: 27.0.1453.110 (1453.110)
7 Code Type: X86 (Native)
8 Parent Process: launchd [262]
9
10 Date/Time: 2013-06-08 15:05:58.996 -0400
11 OS Version: Mac OS X 10.8.4 (12E55)
12 Report Version: 7
13
14 Call graph:
15 7663 Thread_1921 DispatchQueue_1: com.apple.main-thread (serial)
16 + 7662 ??? (in Google Chrome) load address 0xc9000 + 0xf55 [0xc9f55]
17 + ! 7662 main (in Google Chrome) + 24 [0xc9f78]
18 + ! 7662 ChromeMain (in Google Chrome Framework) + 41 [0xcf7f9]
19 + ! 7662 ??? (in Google Chrome Framework) load address 0xcd000 + 0x60d9d0

[0x6da9d0]
20 + ! 7662 ??? (in Google Chrome Framework) load address 0xcd000 +

0x60e69b [0x6db69b]

...

1256 0x99ee6000 - 0x99ef2ff7 com.apple.NetAuth (4.0 - 4.0)
<4983C4B8-9D95-3C4D-897E-07743326487E>
/System/Library/PrivateFrameworks/NetAuth.framework/Versions/A/NetAuth

Fig. 1. Example output from calling the command sample for a 10-second duration on
the Google Chrome application.

SOS: Sonify Your Operating System 3

Computing occurs in a real time stream of events. There is structural regu-
larity supporting many of the tasks that are performed by a computer. Under
the correct conditions, humans are adept at perceiving acoustic pitch, time, and
timbre patterns [1]. Sonification is the use of non-speech audio to convey infor-
mation [2]. We suggest that the sonification of the operating system is a natural
mapping, one which may allow us to easily perceive computational anomalies.
By exercising creative control over such a mapping, we may design an efficient
means for conveying normally unobservable but important information concern-
ing our computing environments.

This paper presents SOS, a framework for allowing users to sonify aspects
of any computer running a Unix-like operating system. The architecture is sim-
ple. The source code is lightweight and utilizes only open-source packages. We
provide an implementation accompanied by a couple of demos online; readers
are encouraged to write synthesis and tracing scripts to meet their sonification
requirements. In the following section we provide background discussion about
the sonification of computer environments. We detail the architecture of SOS in
Section 3. Section 4 gives concluding remarks.

2 Background

Early computer scientists often used sound as a means for monitoring the opera-
tion of their machines. Many computers built in the 1940s and 50s such as SEAC
and SWAC had an amplifier and speaker attached to one or more registers of the
machine. If a computer did not come equipped with an audio transducer, it was
often added later—commonly on the lowest bit of the accumulator [3]. Fernando
Jose Corbatò reports that the audio amplifier on one register of the Whirlwind
computer allowed him to debug his programs by hearing a “signature racket” [4].
Once accustomed to the sound of the machine, the user could identify specific
components of the executing program and listen for bugs or loops.

Computer operators have used AM radio to sonify their machines. Many
computers, notably the IBM 1401, emitted radio frequency signal that could
be picked up by an AM radio receiver when it was placed near the console or
other high-speed circuits. Since computers would often take several hours to
finish a task, engineers could free themselves by placing an AM radio next to
an intercom. The computer operator would monitor their machine and track
program termination [5]. Others have found ways to compose music from the
leaking RF signal of an IBM 1401 [6].

These methods of troubleshooting computers, sometimes referred to as sonic
debugging [7], continued well into the 1980s. Some computer musicians were in-
spired by the folklore of listening to endless loops and optimization problems on
old mainframe computers. There is a tradition of musicians sonifying their com-
puters for compositional purposes. For instance in 1986 computer musicians Phil
Burk, Larry Polansky, and Phil Stone used an Amiga’s stack memory to mod-
ulate the frequency and amplitude of simple waveforms in the piece mod.mania
I, II, and III [8].

4 Sarroff et al.

More sophisticated methods of computer sonification emerged in the 1990s
with integrated development environments and wider availability of personal
computers. Joan Francioni and Jay Alan Jackson describe a system for the au-
ralization of parallel program behavior. Their work gave evidence that sound was
effective in depicting timing information and patterns related to the execution of
a program [9]. LogoMedia is a sound-enhanced programming environment which
allows users to associate non-speech audio with program events while code is be-
ing developed [10]. A similar tool named LISTEN is also intended for debugging
programs [11]. CAITLIN is designed for sonifying specific control sequences (i.e.
IF, THEN, WHILE, etc) as unique, customizable MIDI sequences [12].

The twenty-first century has seen increased interest in sonifying network
data. Peep (The Network Aurilizer) by Michael Gilfix and Alan Couch creates
a soundscape with events triggered by network state information [13]. Mark
Ballora et al. have introduced a system that sonifies web logs or web traffic
in real-time via Python and SuperCollider [14]. Michael Chinen has developed
FuckingWebBrowser, a simple open-source web browser that converts memory
state into audio [15]. For a more thorough background on the sonification of
computers, see [16].

The framework we suggest uses DTrace [17], an extensive dynamic tracing
library. DTrace inserts program code into the kernel and hence allows real-time,
direct access to the basic operations of the operating system. We are unaware of
an extant framework that links a tracing library like DTrace to acoustic events.
The next section gives detail about the system, which may be used for strict
data mapping or for more general compositional purposes.

Kernel
Probes

Message Dispatcher

Sound Synthesis
Engine

Fig. 2. General SOS architecture. Several DTrace probes are instrumented. The mes-
sage dispatcher listens for probe firings and sends OSC messages to a predetermined
port as necessary. The sound synthesis engine listens for messages from the message
dispatcher and synthesizes acoustic events in real time.

3 Architecture

We describe the framework of our operating system sonifier, SOS. There are
three modules: the message dispatcher receives messages from the kernel probes

SOS: Sonify Your Operating System 5

and sends messages to the sound synthesis engine (see Figure 2). It is up to the
user to specify which operating system events to monitor and auditory events
to generate. The SOS framework provides easy mapping for sonification. We
provide detail on each module below. The source code and several demos are
provided at https://github.com/woodshop/dsonify.

3.1 Kernel Probes

We use DTrace to monitor arbitrary system calls executed by the kernel. DTrace
is a dynamic tracing framework originally developed by Sun Microsystems for
the Solaris operating system and that has been widely adopted by many Unix-
like operating systems, including Mac OS. DTrace allows one to modify the
operating system kernel by attaching probes at various locations within the
kernel execution. The set of available probes is quite large and depends on the
OS.

DTrace probes are instantiated by writing a script in the D language, a
subset of the C programming language. An example script is shown in Figure
3. The program prints the message “open” to the standard output every time
the system call open is entered. The pragma statement on Line 2 indicates that
the probe should report back at a rate of ten thousand cycles per second. These
messages are passed to the message dispatcher.

1 #pragma D option quiet
2 #pragma D option switchrate=10000hz
3
4 syscall::open:entry
5 {
6 printf("open");
7 }

Fig. 3. A DTrace program. The program inserts a probe in the open kernel system
call. When the system call is entered the probe fires and prints “open” to the standard
output.

3.2 Message Dispatcher

The message dispatcher receives messages from the kernel probes and sends mes-
sages to the synthesis engine. The dispatcher is programmed using the Python
language. Message passing from DTrace is handled using the Python module
python-dtrace [18], a DTrace consumer for Python. The message dispatcher
instantiates DTrace in a separate thread and listens for printf messages that
are intercepted by python-dtrace.

https://github.com/woodshop/dsonify

6 Sarroff et al.

We use the Open Sound Control (OSC) [19] protocol to send messages to the
sound synthesis engine. Each time a probe message is received, an OSC message
is sent along with an optional value. The sound synthesis engine receives the
message and synthesizes the appropriate sound event. The python interface for
OSC is handled by the pyOSC module [20].

3.3 Sound Synthesis Engine

Sound synthesis is handled by ChucK [21], a “strongly timed” engine for sound
synthesis. It has been widely used for performances by laptop ensembles, live
coders and multimedia artists.

1 OscRecv recv;
2 9000 => recv.port;
3 recv.listen();
4 recv.event("open", "s") @=> OscEvent oe_open;
5
6 main();
7
8 fun void main() {
9 spork ~ inst_open();
10 1::day => now;
11 }
12
13 fun void inst_open()
14 {
15 Sitar s => Pan2 p => dac;
16 -0.75 => p.pan;
17 0.2 => s.gain;
18 while(true) {
19 oe_open => now;
20 while (oe_open.nextMsg() != 0) {
21 oe_open.getString();
22 440.0 => s.freq;
23 1.0 => s.noteOn;
24 }
25 }
26 }

Fig. 4. A ChucK program. The main function starts a thread that runs a real-time
audio synthesizer.

Upon executing the message dispatcher, a ChucK engine is instantiated and
the synthesis script provided by the user is loaded into memory. The synthesis
engine listens for OSC messages over an arbitrary port. Figure 4 shows a short
ChucK program. Line 2 instructs ChucK to listen for incoming OSC messages
on port 9000. The synthesizer designated in inst open is executed in a separate
thread (the ChucK terminology for initiating a new thread is spork). The mes-
sage dispatcher sends the OSC message “open” accompanied by a string. The

SOS: Sonify Your Operating System 7

string may be employed as a control value for the synthesizer. (The example
shown in Figure 4 does not use the string.)

The ChucK programming language is simple yet allows one to mix any com-
bination of synthesizer parameters with incoming OSC messages. Hence the user
may sonify their operating system in a manner that conveys important informa-
tion about OS events. Alternatively, the user may use OS data as a rich resource
for music composition or performance. The interaction between OS sonification
and the additional computational resources demanded by audio synthesizers sug-
gests an area of musical feedback worthy of exploration.

4 Conclusions

In this paper we presented a system for sonifying Unix-like operating systems.
The user must supply a DTrace and ChucK script to SOS specifying sonification
mappings. DTrace is used to monitor the actions of the operating system kernel.
For each action, a message is passed to a message dispatcher, which subsequently
sends an OSC formatted message to a ChucK synthesis engine. Given the large
quantity of system calls per second, sonification allows users to observe dense in-
formation in a mode more natural than text. By sonifying the operating system,
a user’s visual attention is freed to focus on other details.

The code along with two demos for SOS can be found on github at https:

//github.com/woodshop/dsonify. In the first demo integral file management
operations such as file opens and file writes are sonified. The demo gives the
user an idea of how much file access is occurring in the background. Our second
demo allows the user to monitor all outgoing Internet Protocol version 4 (IPv4)
connections, along with the port number. Such sonification allows a user to be
alerted when non-standard ports are being utilized. This information may be
helpful to discover when applications are contacting the outside world without
the user’s knowledge. See the online documentation for more information con-
cerning the auditory events used in the demos. The online accompaniment to
[22] (from which we have based our demos), found at www.dtracebook.com, is
an excellent primer for DTrace programming.

There have been demonstrations in the literature and online for sonifying spe-
cific aspects of the computing environment. To the best of our knowledge, SOS
is a first attempt at providing a general framework that allows sound designers
to link unobserved computing events to their acoustic surroundings. Given the
high flexibility of ChucK and the enormous power of DTrace, we believe that
SOS provides ample opportunity for growth and exploration of OS sonification or
music composition using the OS as an agent. We encourage readers to download
the code and contribute additional demos to the community.

References

1. Bregman, A.S.: Auditory scene analysis: the perceptual organization of sound.
MIT Press, Cambridge, Mass. (1990)

https://github.com/woodshop/dsonify
https://github.com/woodshop/dsonify
www.dtracebook.com

8 Sarroff et al.

2. Kramer, G.: Auditory display: sonification, audification, and auditory interfaces.
Proceedings volume 18, Santa Fe Institute studies in the sciences of complexity.
Addison-Wesley, Reading, Mass. (1994)

3. Thelen, E.: 1401 music, sounds, and movies. Online comment by Michael Mahon:
http://ibm-1401.info/Movies-n-Sounds.html

4. Frenkel, K.A.: An interview with fernando jose corbato. Commun. ACM 34(9)
(September 1991) 82–90 Interviewee-Corbató, Fernando Jose.

5. Johnson, L., Hardy, A.: Oral history of LaRoy Tymes. Online:
http://archive.computerhistory.org/resources/access/text/Oral_

History/102657988.05.01.acc.pdf (June 2004)
6. Andrews, R.: IBM 1401 mainframe, the musical. Online: http://www.wired.com/

culture/art/news/2007/07/IBM1401_Musical (2007)
7. Personal email corresondence with composer Larry Polansky. (June 2013)
8. Burk, P., Polansky, L., Stone, P.: mod.mania I, II, and III. Com-

position notes online: http://music.dartmouth.edu/~larry/misc_writings/

program_notes/spareparts/Page2_BW.png (1986)
9. Francioni, J.M., Jackson, J.A.: Breaking the silence: auralization of parallel pro-

gram behavior. J. Parallel Distrib. Comput. 18(2) (June 1993) 181–194
10. DiGiano, C.J., Baecker, R.M.: Program auralization: sound enhancements to the

programming environment. In: Proceedings of the Conference on Graphics In-
terface ’92, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1992)
44–52

11. Boardman, D., Greene, G., Khandelwal, V., Mathur, A.: LISTEN: a tool to in-
vestigate the use of sound for the analysis of program behavior. In: Computer
Software and Applications Conference, 1995. COMPSAC 95. Proceedings., Nine-
teenth Annual International. (1995) 184–189

12. Vickers, P., Alty, J.L.: Siren songs and swan songs debugging with music. Commun.
ACM 46(7) (July 2003) 86–93

13. Gilfix, M., Couch, A.L.: Peep (the network auralizer): Monitoring your network
with sound. In: Proceedings of the 14th USENIX conference on System adminis-
tration. LISA ’00, Berkeley, CA, USA, USENIX Association (2000) 109–118

14. Ballora, M., Giacobe, N.A., Hall, D.L.: Songs of cyberspace: an update on sonifica-
tions of network traffic to support situational awareness. In: Proc. SPIE. Volume
8064. (2011)

15. Chinen, M.: Fuckingwebbrowser. Online: http://michaelchinen.com/

fuckingwebbrowser/ (2010)
16. Hermann, T., Hunt, A.: The sonification handbook. Logos Verlag, Berlin (2011)
17. Sun Microsystems, Inc.: Solaris Dynamic Tracing Guide. Sun Microsystems,

Inc., Santa Clara, CA (2008) Online: http://docs.oracle.com/cd/E19253-01/

817-6223/.
18. Metsch, T.: python-dtrace. Online: http://tmetsch.github.io/python-dtrace/

(October, 2011)
19. Wright, M.: Open sound control: an enabling technology for musical networking.

Organised Sound 10 (12 2005) 193–200
20. v2lab: pyOSC. Online: https://trac.v2.nl/wiki/pyOSC (2013)
21. Wang, G., Cook, P.: ChucK: Strongly-timed, Concurrent, and On-the-fly Audio

Programming Language. Online: http://chuck.cs.princeton.edu/ (2012)
22. Gregg, B., Mauro, J.: DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and

FreeBSD. Prentice Hall (2011)

http://ibm-1401.info/Movies-n-Sounds.html
http://archive.computerhistory.org/resources/access/text/Oral_History/102657988.05.01.acc.pdf
http://archive.computerhistory.org/resources/access/text/Oral_History/102657988.05.01.acc.pdf
http://www.wired.com/culture/art/news/2007/07/IBM1401_Musical
http://www.wired.com/culture/art/news/2007/07/IBM1401_Musical
http://music.dartmouth.edu/~larry/misc_writings/program_notes/spareparts/Page2_BW.png
http://music.dartmouth.edu/~larry/misc_writings/program_notes/spareparts/Page2_BW.png
http://michaelchinen.com/fuckingwebbrowser/
http://michaelchinen.com/fuckingwebbrowser/
http://docs.oracle.com/cd/E19253-01/817-6223/
http://docs.oracle.com/cd/E19253-01/817-6223/
http://tmetsch.github.io/python-dtrace/
https://trac.v2.nl/wiki/pyOSC
http://chuck.cs.princeton.edu/

	SOS: Sonify Your Operating System
	Introduction
	Background
	Architecture
	Kernel Probes
	Message Dispatcher
	Sound Synthesis Engine

	Conclusions

