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ABSTRACT
Social tagging can provide rich semantic information for large-
scale retrieval in music discovery. Such collaborative intelligence,
however, also generates a high degree of tags unhelpful to dis-
covery, some of which obfuscate critical information. Towards
addressing these shortcomings, tag recommendation for more ro-
bust music discovery is an emerging topic of significance for re-
searchers. However, current methods do not consider diversity of
music attributes, often using simple heuristics such as tag frequency
for filtering out irrelevant tags. Music attributes encompass any
number of perceived dimensions, for instance vocalness, genre, and
instrumentation. Many of these are underrepresented by current tag
recommenders. We propose a scheme for tag recommendation us-
ing Explicit Multiple Attributes based on tag semantic similarity
and music content. In our approach, the attribute space is explicitly
constrained at the outset to a set that minimizes semantic loss and
tag noise, while ensuring attribute diversity. Once the user uploads
or browses a song, the system recommends a list of relevant tags
in each attribute independently. To the best of our knowledge, this
is the first method to consider Explicit Multiple Attributes for tag
recommendation. Our system is designed for large-scale deploy-
ment, on the order of millions of objects. For processing large-
scale music data sets, we design parallel algorithms based on the
MapReduce framework to perform large-scale music content and
social tag analysis, train a model, and compute tag similarity. We
evaluate our tag recommendation system on CAL-500 and a large-
scale data set (N = 77, 448 songs) generated by crawling Youtube
and Last.fm. Our results indicate that our proposed method is both
effective for recommending attribute-diverse relevant tags and effi-
cient at scalable processing.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; H.5.5 [Sound and Music Computing]: Systems
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1. INTRODUCTION
In just over a decade, online music distribution services have

proliferated, giving music a ubiquitous presence on the Internet.
As the availability of online music continues to expand, it becomes
imperative to have effective methods that allow humans to satisfac-
torily explore a large-scale space of mixed content. This is a signif-
icant challenge, as there is no predefined universal organization of
online multimedia content and because of the well-known seman-
tic gap between human beings and computers, in which computers
cannot interpret human meaning with high accuracy. For exam-
ple, a human may search for a song with the primary keywords,
“happy,” “Beatles,” and “guitar.” A human intuitively understands
that ‘happy” is a common human emotion, “Beatles” is a popular
rock band from the 1960’s, and “guitar” is a 6-stringed instrument.
Yet it is difficult to computationally interpret these words with high
semantic accuracy.

Social tagging has gained recent popularity for labeling photos,
songs and video clips. Internet users leverage tags found on social
websites such as Flickr, Last.fm, and Youtube to help bridge the
semantic gap. Because tags are usually generated by humans, they
may be semantically robust for describing multimedia items and
therefore helpful for discovering new content. However, because
they are often generated without constraint, tags can also exhibit
significant redundancy, irrelevancy, and noise.

In order to address the deficiencies of socially collaborative tag-
ging, computer based tag recommendation has recently emerged as
a significant research topic. Current recommendation systems rely
on term frequency metrics to calculate tag importance. However,
some attributes of online content are tagged less frequently, lead-
ing to attribute sparsity. For instance, music encompasses a high-
dimensional space of perceived dimensions, including attributes
such as vocalness, genre, and instrumentation. Yet many of these
are relatively underrepresented by social tagging. For example,
the four most popular tags associated with the musician Kenny G
on Last.fm are “saxophone,” “smooth jazz,” “instrumental jazz,”
and “easy listening,” which are Instrument and multiple Genre at-
tributes. Thus, three out of the four most popular Kenny G at-
tributes are related to genre. According to [2], Genre tags represent
68% of all tags found on Last.fm. Most of the remaining attributes
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are related to Location (12%), Mood & Opinion (9%), and Instru-
ment (4%).

Because attribute representation is so highly skewed, the term
frequency metric which most recommendation systems use may ig-
nore important but less frequently tagged attributes, such as era, vo-
calness, and mood. In this paper, we build upon the current image
domain tag recommendation frameworks by considering Explicit
Multiple Attributes and apply them to the music domain. The re-
sult is a recommendation system which enforces attribute diversity
for music discovery, ensuring higher semantic clarity.

There were several novel challenges undertaken in our work.
First, we constructed a set of music-domain Explicit Multiple At-
tributes. Second, scalable content analysis and tag similarity anal-
ysis algorithms for addressing millions of song-tag pairs were con-
sidered. Last, a fast tag recommendation engine was designed to
provide efficient and effective online service. Our main contribu-
tions are summarized as follows:

1. To the best of our knowledge, ours is the first work to con-
sider Explicit Multiple Attributes based on content similarity
and tag semantic similarity for automatic music domain tag
recommendation.

2. We present a parallel framework for offline music content
and tag similarity analysis including parallel algorithms for
audio low-level feature extractor, music concept detector, and
tag occurrence co-occurrence calculator. This framework is
shown to outperform the current state of the art in effective-
ness and efficiency.

The structure of this paper is as follows. First, we discuss re-
lated work and how ours compares (Section 2). In Section 3 we
present the system architecture. We perform several evaluations of
our system using two data sets in Section 4 and discuss our results
in Section 5. Finally, we give our concluding remarks in Section 6.

2. RELATED WORK
In order to improve the quality of online tagging, there has been

extensive work dedicated to automatically annotating images [9,14,
17, 19] and songs [2, 8, 15, 21]. Normally, these approaches learn
a model using objects labeled by their most popular tags accompa-
nied by the objects’ low-level features. The model can then be used
to predict tags for unlabeled items. Although these model-driven
methods have obtained encouraging results, their performance lim-
its their applicability to real-world scenarios. Alternatively, Search-
Based Image Annotation (SBIA) [23, 24], in which the surround-
ing text of an image is mined, has shown encouraging results for
automatic image tag generation. Such data-driven approaches are
faster and more scalable than model-driven approaches, thus find-
ing higher suitability to real-world applications. Both the model-
driven and data-driven methods are susceptible, however, to similar
problems as social tagging. They may generate irrelevant tags, or
they may not exhibit diversity of attribute representation.

Tag recommendation for images, in which tags are automatically
recommended to users when they are browsing, uploading an im-
age, or already attaching a tag to an unlabeled image, is growing
in popularity. The user chooses the most relevant tags from an au-
tomatically recommended list of tags. In this way, computer rec-
ommendation and manual filtering are combined with the aim of
annotating images by more meaningful tags. Sigurbjörnsson et al.
proposed such a tag recommendation approach based on tag co-
occurrence [18]. Although their approach mines a large-scale col-
lection of social tags, Sigurbjörnsson et al. do not take into account
image content analysis, choosing to rely solely on the text-based

tags. Several others [12, 25] combine both co-occurrence and im-
age content analysis. In this paper, we propose a method that con-
siders both content and tag co-occurrence for the music domain,
while improving upon diversity of attribute representation and re-
fining computational performance.

Chen et al. [4] pre-define and train a concept detector to predict
concept probabilities given a new image. In their work, 62 photo
tags are hand-selected from Flickr and designated as concepts. Af-
ter prediction, a vector of probabilities on all 62 concepts is gen-
erated and the top-n are chosen by ranking as the most relevant.
For each of the n concepts, their system retrieves the top-p groups
in Flickr (executed as a simple group search in Flickr’s interface).
The most popular tags from each of the p groups is subsequently
propagated as the recommended tags for the image.

There are several key differences between [4]’s approach and
ours. First, we enforce Explicit Multiple Attributes, which guar-
antees that our recommended tags will be distributed across sev-
eral song attributes. Additionally, we design a parallel multi-class
classification system for efficiently training a set of concept de-
tectors on a large number of concepts across the Explicit Multiple
Attributes. Whereas [4] directly uses the top n concepts to retrieve
relevant groups and tags, we first utilize a concept vector to find
similar music items. Then we use the items’ entire collection of
tags in conjunction with a unique tag distance metric and a prede-
fined attribute space. The nearest tags are aggregated across similar
music items as a a single tag recommendation list. Thus, where oth-
ers do not consider attribute diversity, multi-class classification, tag
distance, and parallel computing for scalability, we do.

3. SYSTEM ARCHITECTURE
Our system architecture, which is designed for scalability, is

graphically depicted in Figure 1. We use a framework built on
MapReduce to handle parallel processes. The system is function-
ally divided into two parts: offline processing and online process-
ing, and comprised of two modules, Content based Explicit Mul-
tiple Attributes (CEMA) and Social tags based Explicit Multiple
Attributes (SEMA). The CEMA and SEMA modules consequently
maintain indexed lists of Multiple Attribute Fuzzy Music Semantic
Vectors (MA-FMSVs) and Multiple Attribute Tag Distance Vec-
tors (MA-TDVs). During offline processing, a large database of
songs is analyzed. For each song, MA-FMSVs and MA-TDVs
are generated by the Parallel Multiple Attributes Concept Detec-
tor (PMCD) and Parallel Occurrence Co-Occurrence (POCO) algo-
rithms respectively. During online processing, the system quickly
recommends attribute-diverse tags for a user presented song. The
song’s MA-FMSV is predicted by the Concept Detector and con-
sequently used to index into CEMA and find its nearest neighbors.
The nearest neighbors are in turn indexed into SEMA, resulting in
a rank-sorted list of tags for each attribute. In this paper, we sim-
ply adopt same weight for each attribute, it can be easily switched
to unbalanced scheme by using different lengths of rank list in our
future work. Each of the architectural components are discussed in
detail below.

3.1 Framework
As the volume of multimedia data to be processed is potentially

huge, multimedia information retrieval systems need to efficiently
handle large-scale data-intensive computations. Therefore, the scal-
ability of these systems is a major concern. Our framework attends
to this issue directly.

A practical solution for addressing scalability is to distribute
computations across multiple machines [11]. With traditional par-
allel programming models such as the Message Passing Interface,
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Parallel Occurrence Co-
Occurrence (POCO)

Social Tags based Explicit 
Multiple Attributes (SEMA)

Parallel Feature Extraction

Parallel Multiple Attributes 
Concept Detection (PMCD)

Content based Explicit 
Multiple Attributes (CEMA)

Music Content Song ID Social Tags
Song Feature 
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Data Set 
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Tag 
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Figure 1: Flowchart of the system architecture. The left figure shows offline processing. In offline processing, the music content and
social tags of input songs are used to build CEMA and SEMA. The right figure shows online processing. In online processing, an
input song is given, and it K-Nearest Neighbor songs along each attribute are retrieved according to music content similarity. Then,
the corresponding attribute tags of all neighbors are collected and ranked to form a final list of recommended tags.

developers maintain the burden of explicitly managing concurrency.
Thus, significant energy must be devoted to managing system-level
details. In contrast, the MapReduce programming paradigm
presents an attractive alternative [6]. MapReduce is based on the
simple observation that many tasks share the same basic structure.
With MapReduce, computation is applied over a large number of
nodes to generate partial results and then the results are aggre-
gated in some fashion [11]. MapReduce provides an abstraction
for programmer defined “mappers” (k1, v1) → [(k2, v2)] and “re-
ducers” (k2, [v2]) → [v3], and keeps most of the system-level de-
tails hidden, such as scheduling, coordination, and fault tolerance.
As shown in Figure 2, the “mappers” receive every (key, value)
pair from the input partition and emit an arbitrary number of in-
termediate (key, value) pairs. A barrier then shuffles and sorts
the intermediate pairs. “Reducers” are applied to all pairs with the
same key to emit an output (key, value) pair.

Input Input Input

Reduce Reduce Reduce

Output Output Output

Barrier: Group Values by Key

Map Map Map Map

Figure 2: MapReduce Framework. Each input partition sends
a (key, value) pair to the mappers. An arbitrary number of
intermediate (key, value) pairs are emitted by the mappers,
sorted by the barrier, and received by the reducers.

In our work, we use Hadoop1 for back-end parallel process-
ing, which is an open-source implementation of MapReduce. In
Hadoop, a mapper is a JAVA class that contains three functions:
setup, map, and cleanup. The setup function is called once when a
mapper is started, the map function is called several times for each
input key-value pair, and the cleanup function is called once when
a mapper is going to be destroyed.
1http://hadoop.apache.org/

3.2 Explicit Multiple Attributes
Our work uses Explicit Multiple Attributes to enforce controlled

attribute diversity for music content analysis and social tag rec-
ommendation, respectively. At the outset, we define a constrained
set of A attributes and 2 attribute spaces. Each attribute in an at-
tribute space may hold any number of elements, as long as more
than one. We give both the CEMA and SEMA modules their own
Explicit Multiple Attribute space with the same A attributes. How-
ever, their attribute spaces may differ in the elements they contain.
The CEMA attribute space is used to to define the Multiple At-
tribute Fuzzy Music Semantic Vectors (discussed below). That is,
every input song to the system will be classified by its representa-
tion within the CEMA Attribute space. The SEMA attribute space
is used as an anchor point for the corpus of social tags. Since the
global social tag space is noisy and contains many redundant and
irrelevant terms, the elements in the SEMA attribute space are used
as centroids to the entire tag corpus. As will be discussed below,
any tag in the corpus is described in terms of its distances to the
SEMA attribute space. These distances are stored in Multiple At-
tribute Tag Distance Vectors. By predefining these two attribute
spaces, we can ensure attribute diversity and semantic clarity for
tag recommendations.

3.3 Parallel Multiple Attributes Concept De-
tector (PMCD)

The Parallel Multiple Attributes Concept Detector (PMCD) is re-
sponsible for predicting the MA-FMSVs in offline and online pro-
cessing. First, we train it on a database of labeled songs. After-
wards, we can use it to predict (offline) the MA-FMSVs of addi-
tional songs, giving us great flexibility for expanding the system’s
song tag representation without any additional training. Finally, the
Concept Detector is used during online processing for recommend-
ing tags. Below, we discuss MA-FMSVs, the input to the Concept
Detector (which is a vector of low-level music features), and the
training process.

3.3.1 Multiple Attribute Fuzzy Music Semantic Vec-
tors (MA-FMSVs)

For music content analysis, each song is represented by a Mul-
tiple Attribute Fuzzy Music Semantic Vector (MA-FMSV) which
indicates, for each attribute, which element the song belongs to.
FMSVs were proposed by [26] for use on music similarity mea-
sures, and are easily computed by a SVM classifier. For conve-

403



nience, we concatenate the FMSV elements from each attribute to
form a single vector, the MA-FMSV. Every song in our system is
represented by its MA-FMSV. We first use a set of songs described
by their low-level audio features and manually labeled with their
MA-FMSVs for training the Concept Detector. Afterwards, any
unlabeled song can be automatically assigned its MA-FSV by the
Concept Detector.

MA-FMSVs are easily indexed using Locality Sensitive Hash-
ing (LSH) [1]. As evaluated in [26], FMSV representations and
LSH techniques accelerate the searching process among a large-
scale data set (≈ 0.5 seconds on a data set with 3000 samples and
≈ 1.7 seconds on a data set with 1 million samples). With LSH,
we are able to efficiently find the K-Nearest Neighbors of a pre-
dicted MA-FMSV. This is significant to saving time in our online
processing for tag recommendation.

3.3.2 Low-level Music Feature Extraction
Low-level feature extraction is performed on all songs. Because

the individual song feature extractions are independent of each
other, it is easy for us to leverage the MapReduce framework and
design a parallel algorithm for feature extraction. In this case, we
only use the MapReduce mappers (Figure 2). Each song is stored in
the cluster as a single line and is fed into a mapper. In the mapper,
we use Marsyas [22]2 to extract low-level audio features, such as
Spectral Centroid, Rolloff, Flux, and Mel-Frequency Cepstral Co-
efficients (MFCCs) for each short time frame. Finally, the averages
and standard deviations across frames are used to summarize each
song, resulting in a 64-dimensional feature space.

3.3.3 Training
Our concept detector uses a multi-class SVM predictor. Because

our system does not set any constraints on the size of the num-
ber of elements in the CEMA attribute space, parallel processing is
critical to ensuring scalability. Yet, it is difficult to design a SVM
classifier with parallel processing. If using the MapReduce frame-
work, one can allocate a mapper and a reducer for each iteration in
the training stage [3]. However, the process can become cumber-
some with large iteration sizes, so we seek an alternative algorithm
for parallel computing.

A multi-class SVM classifier is usually decomposed into a set
of independent binary SVM classifiers. Using this approach, we
can take advantage of the MapReduce framework. There are sev-
eral methods for decomposing a multi-class SVM classifier into
multiple binary classifiers. We use the “one-versus-one,” method
because it performed the best on our data set during informal eval-
uations. In “one-versus-one” binary classification, a set of classi-
fiers is built for every pair of classes and the class that is selected
by the most classifiers is voted as best. This scheme will be more
efficient with larger size of concepts and it can also be applied to
other domains such as image, video and text.

In our work, we use a novel algorithm, which couples the Pega-
sos SVM solver [16] with a “Random Emitter” approach to Multi-
Class SVM with MapReduce, as opposed to a “Normal Emitter”
approach. In a “Normal Emitter” mode, the mapper acts as an emit
controller. Each sample is emitted NC − 1 times with a different
classifier, where NC is the number of classes in the data set. The
two class labels (one-versus-one) are emitted as the key of the map-
pers’ output. After sorting, all the samples with same key are sunk
into the same reducer. Each sample in a reducer has a “+1” or
“−1” label, where “+1” denotes that it belongs to the first class,
and “−1” that it belongs to the other. The reducer then calls the Pe-

2http://marsyas.info

gasos SVM solver to train a model for this category pair and dumps
the model as the reducer’s output.

The Pegasos implementation of binary SVM classification se-
lects at random only a subset of samples to train a model, and the
size of the subset is a function of the maximum iteration size spec-
ified by the user. Because of this, it is unnecessary for the mapper
to emit all samples. A more sophisticated method of using MapRe-
duce is “Random Emitter” (Algorithm 1), which randomly outputs
samples and limits the size of the output to guarantee the number
of samples is larger but not too much larger than the binary classi-
fier’s needs. Intuitively, the “Random Emitter” acts as the “Random
Sampling” process within Pegasos. Note that “Random Emitter” is
more efficient only when the size of the training data set is larger
than the maximum iteration size of the binary SVM classifiers. The
appropriate threshold can be calculated using this equation:

P+ = P− = α× NC × I
2×N

(1)

where P+ is the threshold of emitting the sample as “+1,” P− is
the threshold of emitting the sample as “−1,” I is the maximum
iteration size of the binary SVM classifier, NC denotes the total
number of classes, N represents the size of data set (the number of
samples), and α > 1 is a scalar to guarantee the number of emitted
samples is larger than maximum iteration.

Algorithm 1 Random Emitter
Procedure: RandomEmitter
Input: S, NC , I and N
Output: Sample string
1: Initialize P+ and P− by Equation 1
2: Get label Label of input S (Sample string)
3: for all i < Label do
4: Get random variable r ∈ [0, 1]
5: if r < P− then
6: Keys = i + “−” + Label
7: Values = “−1” + sample value
8: end if
9: end for

10: for all j > Label and j < NC do
11: Get random variable r ∈ [0, 1]
12: if r < P+ then
13: Keys = Label + “−” + j
14: Values = “+1” + sample value
15: end if
16: end for
17: for all Key ∈ Keys do
18: Emit (Key, Value)
19: end for

Intuitively, if the number of training samples in the data set is
larger than number of samples that the binary SVM classifier re-
quires, then “Random Emitter” should be performed to limit the
mappers’ output. The expected output can be computed using the
following equations:

IE = IE+ + IE− (2)

IE+ =
N
NC

× P+, IE− =
N
NC

× P− (3)

where IE is the expected number of output samples, IE+ denotes
the number of output samples with a “+1” label, IE− denotes the
number of output samples with a “−1” label, and P+ represents the
fraction of the number of emitted positive samples over the number
of input samples in a particular category. Consequently, we may

404



easily infer the value of P+:

IE = 2× N
NC

× P+ (4)

P+ =
NC × IE
2×N

(5)

Obviously, if r ∼ U(0, 1) (as described in Algorithm 1), then
the size of the generated numbers in the range of 0 ∼ P+ should
be equal to the amount of samples that the Pegasos binary SVM
training procedure needs. To guarantee the size of emitted samples
is larger than required, a scalar α is used in Equation 1.

3.4 Parallel Occurrence Co-Occurrence
(POCO)

The number of unique tags increases as more songs are collected,
making it more challenging and time consuming to compute the co-
occurrences between all tags. To tackle the scalability issue, a Par-
allel Occurrence Co-Occurrence (POCO) algorithm is proposed to
generate the Multiple Attribute Tag Distance Vectors (MA-TDVs),
which enable the online tag recommender to quickly retrieve appro-
priate attribute-diverse tags from the entire corpus of tags. Below,
we describe MA-TDVs in more detail, including the tag distance
metric used, and our POCO algorithms.

3.4.1 Multiple Attribute Tag Distance Vectors
(MA-TDVs)

Multiple Attribute Tag Distance Vectors (MA-TDVs) are
designed so that we can relate any tag in a tag corpus to a simplified
diverse attribute space. Specifically, the vectors describe a song’s
tag distances between its socially ascribed tags and the SEMA at-
tribute space chosen at the outset of system implementation.

As there is no existing social web site which ascribes the distance
between music tags, we must define our own tag distance metric for
building our MA-TDVs. We use Google’s word distance metric [5]
for measuring tag distance:

d(ti, tj) =
max(log f(ti), log f(tj))− log f(ti, tj)

logN −min(log f(ti), log f(tj))
(6)

where f(ti) and f(tj) are the counts of songs containing tag ti and
tj (occurrence), and f(ti, tj) represents the number of songs hav-
ing both ti and tj (co-occurrence). N stands for the total number
of songs in the corpus.

The TDV for each tag is then calculated as the distance between
itself and each of the terms in the SEMA attribute space. The terms
in the SEMA attribute space act as a “codebook” for the music
social tags space, and any social tag can be represented using a dis-
tance vector and the codebook. In this way, the TDVs of all music
attributes can be calculated. For convenience, we concatenate the
TDVs from each attribute to form the MA-TDV.

3.4.2 Design of a Scalable POCO Algorithm: POCO-
AIM

Efficient parallel word co-occurrence algorithms have been pre-
sented by [10], in which two methods using the MapReduce frame-
work, “Stripes” and “Pairs,” are evaluated. For our system, we be-
gin by modifying the “Stripes” algorithm, which has been shown to
be more efficient than “Pairs” if all words can be loaded into mem-
ory. In our case, the “words” are song tags, and we are calculating
occurrence and co-occurrence between the terms in the SEMA at-
tribute space and the tags associated with each song. Because tag
occurrence is needed in our implementation for measuring tag dis-
tance (Equation 6), we must adapt the algorithm to also calculate
word occurrence. Because only the distances between social tags

and the terms in the SEMA attribute space are required in our work,
we can reduce the space requirement of a tag co-occurrence matrix
from O(N2

T ) to O(NT × m), where NT is the number of tags in
the corpus and m is the number of terms in the SEMA attribute
space.

In the modified “Stripes” mapper function, a key is one term in
the SEMA attribute space. Its output is an associate array, which
contains all tags not in the attribute space and their co-occurrences
with the key. The mapper function thus generates a large num-
ber of intermediate results. We observe that a more sophisticated
method is to aggregate the results in the mapper, rather than using
a combiner or emitting them line by line [13]. We introduce this
conservational upgrade into the algorithm’s design and name the
new method as POCO Aggregating in Mapper (POCO-AIM). Its
implementation is given in Algorithm 2.

Algorithm 2 POCO-AIM
Class: Mapper(Key, Tags ∈ Song)
Input: < Key, Tags ∈ Song >
Output: < tag,H >

Procedure: setup()
1: INITIALIZE(H)
2: Load SEMA attribute set SA

Procedure: map(Key, Tags)
3: I = Tags

⋂
SA // Intersection of Tags and SA sets

4: D = (Tags− SA) // Difference of Tags and SA sets
5: for all t1 ∈ I do
6: for all t2 ∈ D do
7: H{t1}{t2} ++
8: end for
9: end forProcedure: cleanup()

10: for all t ∈ H do
11: EMIT(tag,H(tag))
12: end for
Procedure: Reduce(tag, [H1, H2, H3, ...])
Input: < tag, [H1, H2, H3, ...] >
Output: < tag,H >
1: INITIALIZE(H )
2: for all h ∈ [H1, H2, H3, ...] do
3: MERGE(h,H)
4: end for
5: EMIT(tag,H )

In the setup function, the tags in the SEMA attribute space are
loaded, and an associate array H is initialized. The input to the map
function is the song ID and an array of its tags. In the map function,
the tags are processed and then classified into two groups. The
first group I contains all the tags that occur in the SEMA attribute
space, and the second group D contains the rest of the tags. Then,
the co-occurrence between tags in I and D are computed and the
associate array H is updated. Finally, in the cleanup function, the
keys stored in H and their values are emitted. Compared with the
modified “Stripes” method, the number of intermediate results and
time taken to shuffle them is greatly reduced, leading to less overall
computational time.

3.5 Online Tag Recommendation
In offline processing, our system constructs the CEMA MA-

FMSVs and the SEMA MA-TDVs for all songs. In online pro-
cessing, given a song without any tags, the system recommends
the most appropriate tags within each attribute. Upon receiving
an untagged song from a user, the online system extracts its audio
low-level features. Then the online process predicts its MA-FMSV.
The system looks for the K nearest songs by using the LSH in-
dex. In turn, the MA-TDVs are collected from the K nearest songs.
The recommender sums and ranks the K MA-TDVs along each at-
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tribute to find the TopN most relevant tags. The values for K can
and N can be changed as parameters.

It is informative to take a closer look at tag ranking time, since
the worst-case complexity of sorting is O(n log n). In our system,
online tag ranking happens in two stages. In the first stage, n de-
notes the m elements in the SEMA attribute space. In the second
stage, n is the total number of social tags in K-Nearest Neighbors
that have been retrieved. Therefore, tag ranking time is expected to
be much smaller than retrieval time.

4. MATERIALS AND METHODS
We evaluated the quality of our system in several experiments

using multiple data sets and evaluation criteria. In this section, we
describe materials and methods for the experiments.

4.1 Data Sets
We gathered several data sets, summarized in Table 1, to train the

concept detector and test the effectiveness of the tag recommenda-
tion system.

Name Classes (Attr.) Size (Train / Test) Feat.
CAL-500 174 (6) 500 64
WebCrawl 20 (4) 77,448 64
HandTag 20 (4) 17,000 64

Table 1: Data sets used for training and testing.

4.1.1 CAL-500
CAL-500 [20] is a smaller-scale database that has been made

publicly available for tag annotation and recommendation tasks.
It includes a 39-dimensional feature set based upon differential
MFCCs and has been used as a benchmark data set for several re-
cent automatic tagging tasks, such as [2, 8, 21]. It consists of 500
songs and 174 classes distributed across 6 attributes: Mood, Genre,
Instrument, Song, Usage, and Vocal. All tags were manually gen-
erated under controlled experimental conditions and are therefore
believed to be of high quality.

4.1.2 WebCrawl
Our system is designed to efficiently operate on large-scale mu-

sic data sets. Therefore, we needed an appropriately large data
set to evaluate for testing. We generated WebCrawl by crawling
488, 407 music items with metadata (e.g. title, album name, and
artist) and social tags from Last.fm. We then used the title and
artists’ names to search for and download more than 200,000 songs
from Youtube. After collecting all music items, we removed mis-
spelled and stop words from the social tags using Wordnet [7] 3

and filtered out any songs without tags. We were left with 77,448
songs.

4.1.3 HandCrawl
The HandCrawl data set is another high quality manually tagged

data set that has recently been used and evaluated in [27]. The
17,000 songs were selected as the most popular in Last.fm’s data
base using its track popularity API. The tracks and metadata were
retrieved by crawling YouTube. Socially tagged ground truth data
was collected in controlled experimental conditions and cross
checked by amateur musicians with reference to Last.fm.
The ground truth data was associated with 4 attributes and 20 asso-
ciated elements, as shown in Table 2.
3http://wordnet.princeton.edu/

Genre Mood Vocalness Instrument
(14,713) (597) (2,131) (1,588)

Classical Jazz Pleasure Male Brass
Country Rock Joyful Female WoodWinds
Electronic Pop Sad Mixed Strings
HipHop Metal Angry NonVocal Percussion

Table 2: The Explicit Multiple Attributes and elements in the
HandTag data set. The number of songs represented by each
attribute are shown in parentheses.

4.2 Evaluation Criteria
Our system is designed to recommend attribute-diverse and rel-

evant tags given an input song. Additionally, we have proposed
several methods for increasing computational efficiency when pro-
cessing large-scale data spaces. In this subsection we set forth the
main criteria by which we experimentally evaluated the system.

4.2.1 Precision and Accuracy
To evaluate our system’s recommendation effectiveness, we fol-

low the examples set in [21] and compute the average per-tag pre-
cision, recall, and F1 score. Per-tag precision is the percentage of
songs that our model recommends with tag t that are actually la-
beled with t in the song’s ground truth tag vector. Recall is the
percentage of songs labeled with t in the ground truth vector for
which our model also recommends tag t. The F1 score is the har-
monic mean of precision and recall, and is a good metric for overall
recommendation performance.

For each song, the tag recommenders provide a ranked list in
order of predicted relevancy. In order to evaluate the quality of
the recommender’s ranking system for suggesting relative tags, we
use Mean Average Precision (MAP@n), defined as the average of
the precisions at each possible level of recall, where n is the re-
call depth (n is also termed the TopN value). Therefore, MAP@n
summarizes effectiveness of precision, recall, and ranking in a sin-
gle metric. Again following [21], if our system doesn’t recommend
a tag t that is in the ground truth vector, then per-tag precision and
recall for t are undefined, and we ignore these words in our evalu-
ations.

4.2.2 Diversity
Our system aims to enforce attribute diversity in its tag recom-

mendations. To quantify the diversity of a set of recommended
tags, we define Diversity@n, which computes the proportion of at-
tributes automatically generated in the top n tags:

Diversity@n ≡
∑n

i A(ti)

NA
(7)

where NA is the total number of attributes, A is a vector and el-
ements ∈ {0, 1}. A(ti) denotes which attributes ti is a member
of.

4.2.3 Computational Scalability
We have proposed several methods for improving the efficiency

of parallel processes for large-scale tag recommendation. The main
criteria that we investigate in our evaluations are computational
time and data throughput.

4.3 Experiments
We executed two experiments designed to evaluate the two basic

contributions of our work. The first evaluates effectiveness of tag
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recommendations on varying sized data sets. The second investi-
gates the computational efficiency of the system architecture.

4.3.1 Tag Recommendation Effectiveness
We conducted two independent evaluations of tag recommen-

dation effectiveness using two datasets: CAL-500 and WebCrawl.
The CAL-500 data set is a popular benchmark for tag recommen-
dation tasks. Thus, we are able to evaluate our work against others’.
Hoffman et al. nicely summarized recent tag recommendation al-
gorithms along with their own in [8]. We borrow their review and
compare those results against several other implementations. In
particular, we report evaluations on tag recommendation for seven
methods, including our own:

1. MixHier: Based on a Gaussian Mixture of Models, uses the
features included with CAL-500 [21].

2. Autotag: An AdaBoost based system using additional train-
ing data and features, along with those included with CAL-
500 [2].

3. CBA: Codeword Bernoulli Average is a probabilistic model
based on using a codebook of size K [8]. For purposes of
comparison, we chose to only report results with K = 500.
Uses the standard feature set in CAL-500.

4. MD: A SVM method without tag propagation and ranking.
This is similar to Model-Driven methods with limited labels.

5. SB: Similar to the Search-Based Image Annotation [23,24], a
method that uses low-level features, rather than MA-FMSVs
to find the K-NN songs.

6. FMSV: A method that uses Fuzzy Music Semantic Vectors,
but doesn’t consider Explicit Multiple Attributes [26].

7. MA-FMSV: Our system—tag recommendation with
Multiple Attribute Explicit Fuzzy Music Semantic Vectors.

We note that we excluded results by Ness et al. [15] for two
reasons: First, they do not use the full tag space available in CAL-
500. Second, our concept detector is similar to the first stage of
their two-stage framework; it can easily be extended to include the
second stage. Procedures 4–7 were directly implemented by us.
We used the feature extraction space discussed in this paper, rather
than CAL-500’s feature set. Training and testing was done on the
same data set, using 2-fold cross validation. For procedures 5–7,
parameters K and N were set at 15 and 12, respectively.

For our second evaluation, we trained our system on the Hand-
Tag data set and tested on the WebCrawl data set. This evaluation
was designed to test the system on a data space of much larger scale
than the CAL-500 experiments. As such, we only report tag rec-
ommendation performance using procedures 4–7 above. For proce-
dures 5–7, parameters K and N were set at 15 and 8, respectively.

In addition to the above evaluations, we also study the impact of
K in K-NN and N in TopN on the recommendation effectiveness
of procedures 5–7.

4.3.2 Tag Recommendation Efficiency
We test the efficiency of our our system at two points: the PMCD

algorithm, and the POCO-AIM algorithm. We evaluate the im-
provement of POCO-AIM’s computational efficiency over a modi-
fied “Stripes” implementation, comparing the size of the mappers’
intermediate output and the computing times. We used the Last.fm
data set, as its size is considered to be appropriately large to model
real-world tasks.

4.4 Computing
Our system runs on a cluster of 77 nodes (1 master, 76 slaves)

comprising 22 TB storage capacity. A server is used as the master
node, which has 2 X 4 core CPU (2.5 GHz) and 32GB memory.
28 machines with 2 core CPU (SUN V20Z, 2.18 GHz) and 2GB
memory serve as slave nodes. The remaining 48 slave nodes come
from 6 servers, and each server is divided into 8 virtual machines.
Each server has 2nd Intel Quad Core E5506 Xeon CPU ( 2.13GHz,
4M Cache, 4.86 GT/s GPI) and 32GB memory. The expandable
nature of the system guarantees that it can be easily extended to
handle millions or even billions of songs.

5. RESULTS

5.1 Tag Recommendation Effectiveness

5.1.1 CAL-500
Table 3 compares the results of evaluating multiple procedures

on the CAL-500 data set. As reported in [21], the top two rows
show the upper bound and a random baseline, respectively. The
SVM-based methods (MD, SB, FMSV, & MA-FMSV) performed
better than any of the others; this has also been supported by [15].
The best recall and F1 score results were obtained by the simplis-
tic model-driven (MD) method, while precision was similarly high
for MD and FMSV methods. Our system performed approximately
85% better than the next highest method (FMSV) in enforcing at-
tribute diversity. Additionally, MA-FMSV was the best system for
appropriately ranking its recommendations.

Method Prec. Recall F1 Score MAP Diver.
UpperBnd 0.712 0.375 0.491 1 1
Random 0.144 0.064 0.089 - -
MixHier 0.265 0.158 0.198 - -
Autotag 0.312 0.153 0.205 - -

CBA 0.286 0.162 0.207 - -
MD 0.606 0.212 0.314 0.511 0.272
SB 0.412 0.082 0.137 0.644 0.524

FMSV 0.637 0.121 0.203 0.7204 0.539
MA-FMSV 0.588 0.206 0.307 0.739 0.997

Table 3: Comparison between tag recommendation procedures
on the CAL-500 data set.

We wanted to evaluate the effect of the K parameter for nearest
neighbors on recommender effectiveness. In theory, by using near-
est neighbors, a system should be able to recommend a richer set
of tags. As opposed to the SB method, the FMSV methods con-
sider music content in their nearest neighbor search, while MA-
FMSV enforces attribute diversity. We therefore tested the rela-
tionship between number of neighbors and the effectiveness of the
three recommendation systems. Figure 3 illustrates that FMSV ex-
hibited the best precision over all values for K. All three SVM
methods were quite sensitive to the K value, gaining considerable
performance as K increased. This is understandable, as the data
set’s tag space was a relatively clean one. Therefore, increasing
the number of nearest neighbors will increase the number of high
quality tags aggregated in SEMA, thereby reducing informational
signal to noise ratio. The recall, F1 score (not shown), and MAP
measurements were less sensitive to K value for all three methods,
yet MA-FMSV performed better across the board (except for MAP
when K > 55). K did not have a significant effect on Diversity
measurements.
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Figure 3: K variable versus recommendation effectiveness for
the CAL-500 data set (N = 12).

Figure 4 illustrates the effect of parameter N for tag recommen-
dation MAP and Diversity. All methods suffer in MAP perfor-
mance as N is increased. The two non attribute-diverse methods,
SB and FMSV, show considerable gain in Diversity performance
when N is increased. However, they are only able to achieve ap-
proximately 65% of the performance that MA-FMSV does. There-
fore, MA-FMSV can recommend a highly attribute-diverse set of
tag while maintaining relatively good MAP performance.

5.1.2 WebCrawl
When presented with a much larger-scale training and testing

data set, all SVM methods perform noticeably worse. This under-
scores the necessity of evaluating tag recommendation systems on
data sets that realistically approximate real-world scenarios. Ta-
ble 4 shows that the pure model-driven method no longer obtains
the best results in a large-scale data set such as WebCrawl. There-
fore, we suggest that MD’s optimal performance on a small, clean
data set does not generalize to larger data sets. Despite overall de-
creased performance, the MA-FMSV outperforms all other SVM
methods (except on recall).

Method Prec. Recall F1 Score MAP Diver.
MD 0.133 0.388 0.198 0.218 0.723
SB 0.164 0.456 0.242 0.336 0.678

FMSV 0.166 0.458 0.244 0.335 0.680
MA-FMSV 0.210 0.417 0.279 0.362 0.958

Table 4: Comparison between tag recommendation procedures
on the WebCrawl data set.

Again, we examine the impact of the tunable parameters K and
N on the effectiveness of SVM systems, but with a large-scale data
set. In Figure 5, FMSV and SB obtain nearly exactly the same re-
sults and a slight increase in performance over increasing K. MA-
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Figure 4: N variable versus recommendation effectiveness for
the CAL-500 data set (K = 15).

FMSV shows better performance across all K, except for the recall
measurement when K < 25.

With regard to TopN values and the WebCrawl data set, we find
trends similar to Figure 4 in Figure 6. In this case, however, at a
high enough N value, all SVM methods perform at near unitary
Diversity. Yet, Figure 4 shows that cost in MAP performance may
be avoided if MA-FMSV is used for tag recommendation.

5.2 Tag Recommendation Efficiency

5.2.1 PMCD
In our system, the Pegasos based PMCD algorithm was modi-

fied with a “Random Emitter” method to reduce MapReduce pay-
load when given a large number of input samples. In order to
check that our decomposed and modified version of Pegasos per-
forms correctly, we tested it on a generic multi-class problem set of
1,000,000 samples and 20 classes. In all cases, PMCD performed
similarly to or better than LibSVM. We are therefore confident that
our modifications do not come with loss in classifier accuracy.

To show the efficiency of the revised “Random Emitter” method
over standard methods, we plot the number of samples output from
the mapper as a function of sample size input. The left graph in
Figure 7 shows that the “Normal Emitter” and “Random Emitter”
have exactly the same number of emitted samples when the size
of data set is small. However, as the size of data set increases,
the “Random Emitter” pre-samples the data and limits the output.
In this case, if we set C = 20 and T = 100, 000, then the total
required sample size is C×(C−1)

2 ∗ T . As can be seen, when the
size of the dataset is larger than the number of samples required by
Pegasos, the “Random Emitter” limits the system’s output, while
the output of a “Normal Emitter” increases linearly.

5.2.2 POCO-AIM
In our work, we have proposed the POCO-AIM algorithm for
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Figure 5: K variable versus recommendation effectiveness for
the WebCrawl data set (N = 8).

calculating the occurrence and co-occurrence between social tags
and elements in SEMA. In doing so, we first modified the “Stripes”
method proposed by Lin et al. [10] by adding functionality for
counting term occurrence. We have designated the modified al-
gorithm as POCO-Revised Stripes (POCO-RS). Then, we intro-
duced additional modifications for improving the computational ef-
ficiency of POCO-RS as POCO-AIM.

In order to model real-world computational requirements, we
crawled much of the Last.fm data set, which has 8,338,431 un-
sorted tags over 440,407 songs to test the computational efficiency
of our parallel processing algorithm, POCO-AIM. In the middle
graph of Figure 7, we show that the running time of POCO-AIM
decreases as the number of mappers increases by a significant
amount until the system’s memory resource are depleted (when the
number of mappers exceeds 40). As can be seen, POCO-AIM re-
quires approximately 33% of the computational time that POCO-
RS does when 40 mappers are in use. Therefore, POCO-AIM out-
performs the modified “Stripes” as long as the vocabulary of all tags
in use is small enough to be stored directly in memory. The corpus
of tags used to describe music is relatively small compared to that
of text, image and video, so POCO-AIM is an appropriate method
for tag recommendation. POCO-AIM accomplishes computational
efficiency by aggregating results in the mapper, therefore reducing
the number of intermediate results emitted from all mappers. The
right side of Figure 7 shows that the size of the intermediate results
emitted from all the mappers in POCO-AIM is much less (approx-
imately 50% when the number of mappers = 40) compared to the
modified “Stripes” algorithm.

6. CONCLUSIONS
We have presented a framework fo large-scale music tag recom-

mendation with Explicit Multiple Attributes. The system guaran-
tees that recommended tags will be attribute-diverse. Additionally,
we have detailed parallel music content analysis, concept detection
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Figure 6: N variable versus recommendation effectiveness for
the WebCrawl data set (K = 15).

and parallel social tags mining algorithms based on the MapReduce
framework to support large-scale offline processing and fast online
tag recommendation in each pre-defined attribute.

Our experiments have shown that our system’s tag recommen-
dation is more effective than many existing recommenders and at
least as effective as other SVM-based methods. In all cases, rec-
ommended tags are more attribute-diverse and the recommender’s
ranking system has been shown to be more effective. Additionally,
we have proven that our tag recommender is scalable to very large
data sets and real world scenarios. Due the generality of our pro-
posed framework and three parallel algorithms, we believe that it
may be used in other multimedia content analysis and tag recom-
mendation tasks, as well.

Our future tasks include evaluating the performance of our
framework using mismatched and larger sized CEMA and SEMA
attribute spaces. We also aim to compare our POCO method with
purely co-occurrence based schemes. During testing, we found that
speedup was not as optimal as desired when we approached the lim-
its of our computational resources. We therefore plan to investigate
how speedup may be further optimized and comprehensive evalu-
ation on efficiency will be conducted. Finally, we are working to
design a human-friendly interface for our recommendation system
so that we may distribute it to the public domain.
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