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Activation Functions
Elementary transcendental functions have 
desirable characteristics [2] but may be 
difficult to train.

tanhtanh: holomorphic 
but unbounded

Squashing and 
phase-preserving 
[3]: not holomorphic 
but bounded

Complex-
valued LSTM 
encounters 
singularity 
during training 
on toy task.

Framework
Dependency Graph:

y = f(g) = f(g, g) = |g|2 = ggy = f(g) = f(g, g) = |g|2 = gg
y = (f � g � h)(z)y = (f � g � h)(z)

We seek to find the Jacobian of ff  with 
respect to zz, JzJz.

If gg or hh are nonholomorphic then the 
dependency graph is not straightforward 
to compute.

Algorithm 
Wirtinger calculus provides 
convenient means to compute 
partial derivatives of complex-
valued functions.

Use the following identities to 
keep track of two gradients rather 
than four:
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Wirtinger Calculus
Let z 2 Zz 2 Z, x, y 2 Rx, y 2 R, with

f(z) = f(z, z) = f(x, y) = u(x, y) + iv(x, y)f(z) = f(z, z) = f(x, y) = u(x, y) + iv(x, y)

and zz denoting complex conjugate of zz.

CRCR (Wirtinger) Calculus:
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Cauchy-Riemann Equations:
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@y, or equivalently:  @f@z = 0@f
@z = 0.

Motivation
Back-propagation for complex valued networks.
Easily build deep networks having compositions of 
holomorphic and non holomorphic functions.

Why fully-complex activations?
We may want to have a means of jointly modeling 
phase-amplitude dependencies for time-frequency 
representations of audio.

Why split-complex activations?
Liouiville’s theorem: Every bounded entire function 
must be constant. We might prioritize boundedness in 
some components of a model.

Abstract
We present a framework for building deep and 
temporal complex-valued networks that contain 
compositions of holomorphic and non-holomorphic 
functions. The gradients of a real-valued cost function 
are back-propagated through the network to adjust the 
parameters by:

•  Using convenience of  Wirtinger calculus.
•  Leveraging identities of the complex conjugate.
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