Framework for Deep and Temporal Complex-Valued Networks ¹Andy M. Sarroff, ²Colin Raffel, ¹Michael Casey, ²Daniel P. W. Ellis

Abstract	Framework
We present a framework for building deep and temporal complex-valued networks that contain	Dependency Grap
ompositions of holomorphic and non-holomorphic	
inctions. The gradients of a real-valued cost function re back-propagated through the network to adjust the	$y = f(g) = f(g, \overline{g}) = $ $y = (f \circ g \circ h)(z)$
rameters by:	
 Using convenience of Wirtinger calculus. Leveraging identities of the complex conjugate. 	We seek to find the
Leveraging identities of the complex conjugate.	respect to z , J_{z} .
	If g or h are nonhol
Activation	dependency graph i to compute.
ack-propagation for complex valued networks.	to compute.
asily build deep networks having compositions of	
lomorphic and non holomorphic functions.	f (
Why fully-complex activations?	
Ve may want to have a means of jointly modeling hase-amplitude dependencies for time-frequency	$\mathbf{J_g} = rac{\partial f}{\partial g}$
epresentations of audio.	
hy split-complex activations?	
ouiville's theorem: Every bounded entire function	$\mathbf{J_h} = \mathbf{J_g} rac{\partial g}{\partial h} + \mathbf{J_{\overline{g}}} \overline{\left(rac{\partial g}{\partial \overline{h}} ight)}$
nust be constant. We might prioritize boundedness in ome components of a model.	
	h
	$\mathbf{J_z} = \mathbf{J_h} \frac{\partial h}{\partial z} + \mathbf{J_{\overline{h}}} \overline{\left(\frac{\partial h}{\partial \overline{z}}\right)}$
Virtinger Calculus	$\partial z = \partial n \partial z + \partial h (\partial \overline{z})$
et $z \in \mathbb{Z}, x, y \in \mathbb{R}$, with	2 (
$(z) = f(z,\overline{z}) = f(x,y) = u(x,y) + iv(x,y)$	
nd \overline{z} denoting complex conjugate of z.	
R (Wirtinger) Calculus:	References
$\mathbb{R}\text{-derivative} = \frac{\partial f}{\partial z}\Big _{\overline{z} \text{ constant}} \qquad \overline{\mathbb{R}}\text{-derivative} = \frac{\partial f}{\partial \overline{z}}\Big _{z \text{ constant}}$	[1] Brandwood, D.
	adaptive array theor IEE Proceedings F
Cauchy-Riemann Equations: $y = \frac{\partial y}{\partial y} = \frac{\partial y}{\partial y}$	
$\frac{du}{dx} = \frac{\partial v}{\partial y}, \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}, \text{ or equivalently: } \frac{\partial f}{\partial \overline{z}} = 0.$	[2] Kim, T., and Ad perceptrons <i>Neural</i>

¹Dept. of Computer Science, Dartmouth College, Hanover, New Hampshire

²LabROSA, Dept. of Electrical Engineering, Columbia University, New York Contact: sarroff@cs.dartmouth.edu

amework

pendency Graph:

$$= f(g) = f(g,\overline{g}) = |g|^2 = g\overline{g}$$
$$= (f \circ g \circ h)(z)$$

seek to find the Jacobian of f with pect to z, $\mathbf{J}_{\mathbf{z}}$.

or h are nonholomorphic then the endency graph is not straightforward compute.

 $g \bigcirc \overline{g}$

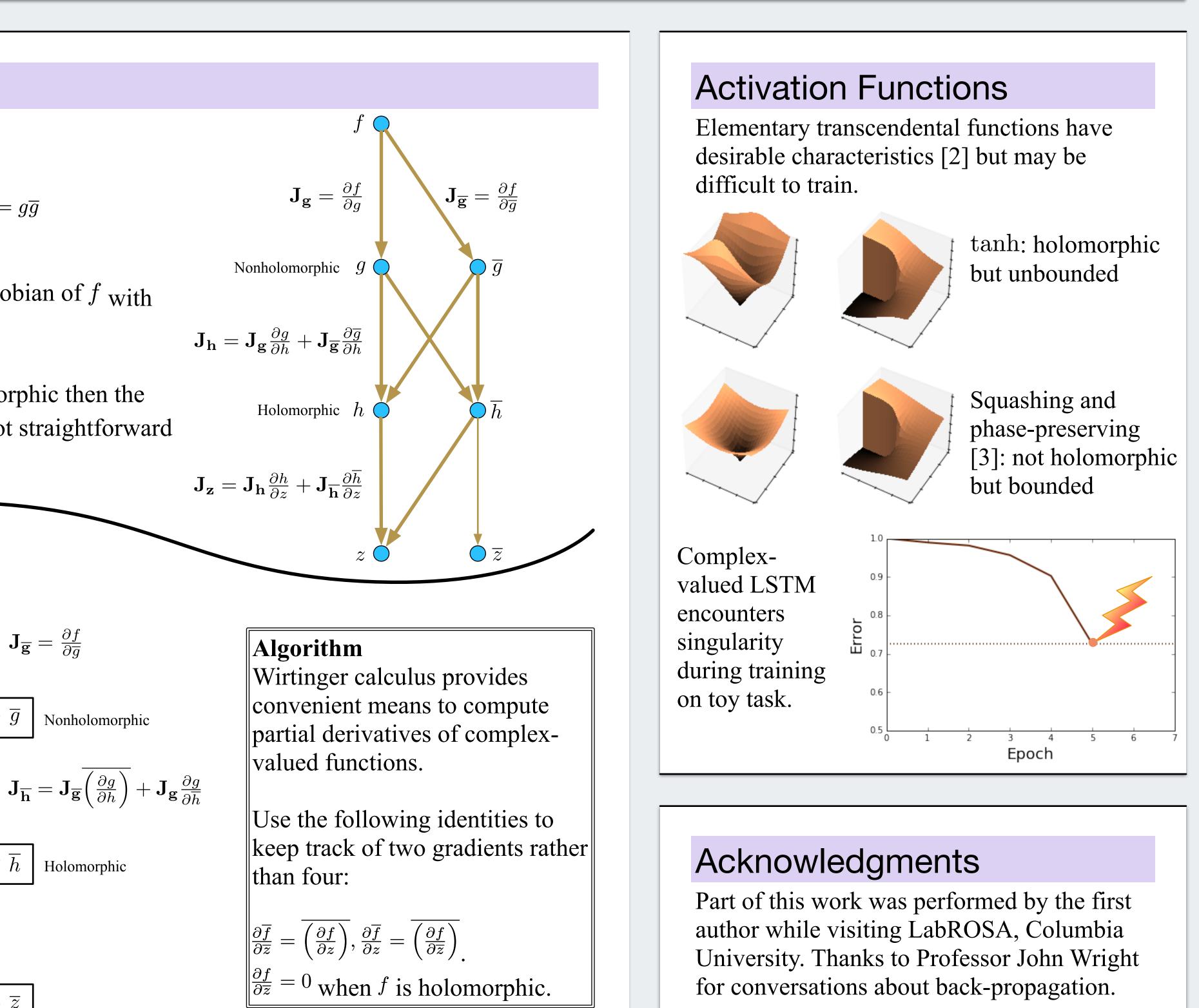
 $h \bigcirc \overline{h}$

 $z \bigcirc \bigcirc \overline{z}$

 $\mathbf{J}_{\overline{\mathbf{g}}} = \frac{\partial f}{\partial \overline{a}}$

Nonholomorphic

Holomorphic



$$\frac{\partial \overline{f}}{\partial \overline{z}} = \overline{\left(\frac{\partial f}{\partial z}\right)}, \frac{\partial \overline{f}}{\partial z} = \overline{\left(\frac{\partial f}{\partial \overline{z}}\right)}.$$
$$\frac{\partial f}{\partial \overline{z}} = 0 \text{ when } f \text{ is holomorphic.}$$

ferences

[3] Georgiou, G., and Koutsougeras, C. *Complex domain* backpropagation. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on 39, 5 (May 1992), 330–334.

Brandwood, D. A complex gradient operator and its application in ptive array theory. Communications, Radar and Signal Processing, *Proceedings F 130*, 1 (February 1983), 11–16.

[4] Mandic, D. P., and Goh, V. S. L. *Complex Valued Nonlinear* Adaptive Filters: Noncircularity, Widely Linear and Neural Models. Wiley, Chichester, U.K., 2009.

[2] Kim, T., and Adalı, T. Approximation by fully complex multilayer perceptrons. Neural Computation 15, 7 (July 2003), 1641–1666.