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A computational model of perceived spaciousness in recorded musical signals, inspired by

research in music information retrieval (MIR), is presented and evaluated experimentally.

First three dimensions of spaciousness are selected for computational modeling: width of

source ensemble, extent of reverberation, and extent of immersion. Next human subject

responses to stereophonic music along these dimensions were collected. Then audio features

from this data set of music were extracted and finally three exemplar-based machine learning

models for estimating the three dimensions of spaciousness were trained and tested. The worst

predictor was found to perform at least 32% better than a baseline predictor. These results are

important to the music and audio engineering communities, as computational models for

spaciousness in music may present new, perceptually meaningful methods of analysis and

processing for the spatial characteristics of recorded music.

0 INTRODUCTION

Spatial impression in music transmits important

semantic information, such as genre, acoustic context,

or emotional content. The artful handling of spatial cues

in recorded music is in part responsible for creating an

enjoyable listening experience. Because of this, music

engineers allocate significant energy to controlling the

character and extent of acoustically related spatial

attributes and attributes of space in music by relative

placement of microphones, performers, and reflecting

surfaces. Spatial impression is further manipulated by

source mixing, signal processing, and multichannel

panning techniques. As such, perceived spaciousness is

a crucial attribute of recorded music, and one that music

engineers attend to with care. Yet spatial impression as it

is related to the recorded musical signal has not been

thoroughly explored in research literature.

Because spatial cues are closely managed by music

engineers, two assumptions may be made. The first is that

digital musical signals may exhibit measurable qualities that

relate to spaciousness. The second is that human perception

of spaciousness in recorded music may be consistent across

subsets of human listeners. If these are true, then perceived

spaciousness may be modeled computationally as a function

of measurable properties of digital audio. Such a model

would be useful for music engineers, musicians, and music

listeners, allowing new interaction with music in perceptu-

ally meaningful ways. With an accurate model of spacious-

ness we may have access to new analytic tools and signal

processing mechanisms for mixed music. For instance,

extent of spaciousness may be displayed visually for

multimodal music analysis. Or top-down controls for

spaciousness may be designed that deliver novel ways to

customize the music listening or making experience. In this

paper we design a framework for such a model and evaluate

it experimentally.

There are several challenges to modeling spaciousness.

As yet there is no universally agreed upon definition for

spaciousness in recorded music. And there is no

predetermined basis for a comparison of spaciousness

across recordings of music. We therefore lack the

necessary data sets and tools to evaluate a model for

spaciousness. Accordingly, in this paper we synthesize

knowledge from related fields and provide a low-

dimensional parameterization of spaciousness, comprised

of the width of the source ensemble, the extent of

reverberation, and the extent of immersion. We then

collect a data set of human subject responses to auditory

stimuli. Finally we train a computational model that links

subjective responses to a set of audio features, which are

inspired by research in music information retrieval (MIR).

The model’s predictive accuracy will be shown to be

high, beating a baseline predictor by more than 32%.

Our study contributes a data set of over 2000 responses

across 50 musical stimuli; a model for a low-dimensional

parameterization of spaciousness; and a framework (Fig.

1) for modeling spaciousness using exemplar-based

machine learning techniques. In this paper we model

three dimensions of spaciousness for stereophonic music

recordings. However, we believe the framework is

generalizable to other multichannel formats. The organi-
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zation of this paper is as follows. In Section 1 we

parameterize spaciousness in three dimensions by syn-

thesizing knowledge from other fields. Then, in Section 2,

we execute a human subject study to collect quantitative

ratings of spaciousness along these three dimensions. In

Section 3 we map the subjective data to objective digital

signal measurements using machine learning techniques.

We discuss the significance of the model and some of its

limitations in Section 4, and we present concluding

remarks and future work in Section 5.

1 PARAMETERIZING SPACIOUSNESS

The concept of ‘‘spaciousness’’ is not universally

defined. Rather, the auditory, physical, and engineering

sciences have treated spaciousness somewhat indepen-

dently in order to answer questions most relevant to their

domains. In acoustics, for example, spatial impression is

important for optimizing room design. In engineering,

sound reproducing systems are evaluated for the quality

and integrity of their spatial displays. Our work builds a

model of perceived spaciousness with respect to the

digitally recorded music signal, rather than the listening

environment or reproducing system. However, spatial

impression has not previously been parameterized

explicitly for the recorded signal and from an MIR

perspective. We therefore seek knowledge from related

research to choose a low-dimensional parameterization of

spatial impression. The spatial parameters we choose are

not complete. It is beyond the scope of this work to

attempt to model the full set of perceived spatially related

attributes. Rather, we somewhat arbitrarily choose

attributes that describe various spatial relationships for

listeners, and our choices are motivated by research in

spatial perception by acousticians and engineers. In the

following subsections we summarize the motivating work

and our choices of spatial parameters.

1.1 Acoustics

In 1967 Marshall determined that ‘‘spatial responsive-

ness’’ is a desirable property of concert halls [1]. By

analyzing echograms and architectural drawings of dissim-

ilar rooms, he concluded that good spatial responsiveness

arises from well-distributed early reflections of the direct

sources. Since Marshall’s findings, spaciousness in music

halls has been parameterized by two distinct dimensions:

apparent source width (ASW) [2] and, later, listener

envelopment (LEV) [3], [4]. The first has consistently been

attributed to early lateral reflections and the latter to the late

arriving sound in an acoustic space. While the respective

terms have been distinguished by varying labels and

definitions, they have more or less been used to describe

the same two phenomena throughout. (For an overview of

the development and semantics of the terms ASW and LEV,

we recommend [5].)

Despite minor differences in interpretation across

studies, the perceptual dimensions of ASW and LEV

can be defined as follows [6]:

Apparent source width (ASW) is the apparent auditory

width of the sound field created by a performing entity as

perceived by a listener in the audience area of a concert

hall.

. . .
Listener envelopment (LEV) is the subjective impression

by a listener that (s)he is enveloped by the sound field, a

condition that is primarily related to the reverberant sound

field.

ASW includes sensations of broadness, blurriness, and

ambiguity in localization. LEV, on the other hand,

imparts sensations of fullness and surrounding.

ASW has been attributed to the early arriving lateral

energy as early as 1971, when Barron determined that the

relative level of the lateral reflections arriving within 80

ms of the direct signal contributed to spatial impression.

While he did not use the term ‘‘apparent source width,’’ he

described an apparent broadening of the source [7].

Bradley and Soulodre were the first to show systemati-

cally that ASW and LEV are separably perceived

components of spatial impression, and that perception

of LEV can impact perception of ASW [8]. They show

that energy arriving later than 80 ms after a direct sound

produces a different spatial impression than ASW, and

they describe the sensation as ‘‘listener envelopment.’’
Bradley and Soulodre indicate that ASW and LEV may

arise as distinct perceptual components because early

arriving sound is temporally and spatially fused with the

direct sound by the auditory system, whereas late arriving

sound is not. The phenomenon of time-based sound

integration was demonstrated on speech signals by Haas

[9]. Bradley and Soulodre’s findings are significant to

concert hall design. Rather than optimize the level of

early lateral reflections, as was popular practice at the

time, the perceptual phenomenon of LEV indicated that

the late arriving energy must be considered carefully

when designing concert spaces.

In natural acoustic environments the relative positions of

Fig. 1. Framework for predicting perceived spaciousness of music recordings.
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sound sources to each other, the relative positions of sound

sources to a listener, the listener’s and sources’ relative

positions to the surfaces of the listening environment, and the

physical composition of the structures that form and fill the

listening environment are each factors that contribute to

ASW and LEV. Because ASW and LEV are normally

experienced in a linear, time-invariant system, the transfer

function for various source–listener relationships can be

captured and analyzed for spatial impression. There have

been many such objective measurements for each. Methods

using the lateral energy or interaural cross-correlation

function have been employed for measurements of ASW

[6], [10], [11], and varying measurements of late arriving

energy are used for LEV [8], [12]–[14]. ASW and LEV

provide not only well-defined meanings for perceived

spaciousness in ‘‘live’’ listening environments, but a means

of studying their relationship to measurable quantities in the

physical world.

1.2 Sound Reproduction

Sound reproduction systems such as Surround Sound

create a virtual representation of spatial sound by utilizing

a discrete number of audio channels. It is often necessary

to evaluate the quality of spatial reproduction systems.

For this, researchers must know which attributes of

spaciousness are most important to human listeners.

Nonverbal [15], [16] and verbal [17] elicitation tech-

niques have been studied at the University of Surrey and

elsewhere, with Berg and Rumsey reporting extensively

on verbal assessments of spatial audio quality [18]–[20].

A systematic method for evaluating spatial quality is

proposed in [21], in which Berg and Rumsey list 13

perceived attributes of spaciousness that they have found

to be significant for evaluating audio quality. The

attributes, which were validated in two separate experi-

ments involving unique stimuli and subjects [19], [22],

are suggested to be discriminative enough for other

subjective evaluations of spatial quality. These attributes

are duplicated in Table 1. Berg and Rumsey note that

some spatial attributes are perceived in both audio

reproduction systems and concert halls (such as those

dealing with envelopment), while others are perceived

only in the former. This leads to a higher parameterization

of spaciousness when evaluating audio reproduction

quality, with attributes such as naturalness arising. Berg

and Rumsey have shown in [18] that attributes may be

grouped into one of three classes: descriptive, emotional/

evaluative, or naturalness.

In [21] Berg and Rumsey have offered some important

insight, which we find helpful to this work. First,

attributes that deal with the room tend to be judged

differently than those that deal with the sources. Second,

perceived room attributes can be categorized as those that

deal with the physical properties of the room, such as

room sound level (reverberation), and those that deal with

the listener’s feeling of being present in the room. Finally

attributes seem to be perceived mainly in the dimensions

of ‘‘source width,’’ ‘‘distance to the source,’’ and

‘‘sensation of presence in the room.’’ Rumsey notes in

[23] that attributes of space are often confused in the

literature with spatial attributes, but are qualitatively

different. The first class of attributes describe the physical

characteristics of a space, such as the reverberation level

of a concert hall. Spatial attributes, however, refer to

those characteristics that impart sensations of dimension-

ality, size, and space of reproduced sources, groups of

sources, or environments. In the following subsection we

discuss how we borrow these concepts to construct our

model parameterization.

1.3 Recorded Music

As far as we know there has not been a thorough

attempt in the literature to parameterize perceived

spaciousness for recorded musical signals. While re-

searchers in acoustics and audio reproduction quality

must decide on appropriate parameterization for spa-

ciousness, their tasks are inherently different from ours.

Researchers in acoustics are dealing with the physical

environment. Recorded music often exhibits attributes of

spaciousness that could never be realistically experienced

in the physical world. Sound reproducing systems are

evaluated based on the quality of the spatial display,

rather than a quantification of the perceived spatial

attributes resulting from the recorded signal.

As such we have no complete and systematic work

from which to select the ‘‘best’’ attributes to model or

from which to define them. We used our own experience

in the domain of music production and the cited literature

as motivation for selecting a set of attributes to build our

model. In particular we parameterized the model with

‘‘width of source ensemble,’’ ‘‘extent of reverberation,’’

and ‘‘extent of immersion.’’ Table 2 shows the attribute

definitions, as given to our subjects during data collection.

We describe our motivations behind parameter choices in

the following paragraphs. Please note that we made no

assumptions concerning the orthogonality of these three

dimensions. They may be perceived concurrently, and

perception of one may influence perception of the others.

Table 1. Significant spatial attributes reported in [21].*

Attributes

Naturalness† Presence†

Preferencejj Low-frequency content

Ensemble width Individual source width

Localization Source distance

Source envelopment Room width

Room size Room sound level

Room envelopment

*Most attributes are in the descriptive class.
†Attributes in the naturalness class.
jjAttribute in the emotional/evaluative class.
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1.3.1 Width of Source Ensemble

Width of source ensemble describes the listener’s

perception of how widely a group of sources is

represented in the sound field, irrespective of any room

characteristics. We chose this attribute because we

wanted our model to capture the ‘‘wideness’’ of a mix,

which can be manipulated by source panning, phasing,

and other techniques. We were motivated by the ensemble

width listed in Berg and Rumsey [21], which was defined

thus for their subjects:

The perceived width/broadness of the ensemble, from its

left flank to its right flank. The angle occupied by the

ensemble. The meaning of ‘‘the ensemble’’ is all of the

individual sound sources considered together. Does not

necessarily indicate the known size of the source, e.g., one

knows the size of a string quartet in reality, but the task to

assess is how wide the sound from the string quartet is

perceived. Disregard sounds coming from the sound

source’s environment, e.g., reverberation—only assess the

width of the sound source.

Even though this attribute evaluates wideness, it cannot be

related directly to apparent source width (ASW). ASW is

usually tested in terms of individual sources, rather than

ensembles. In contrast, our aim is to predict spatial attributes

of the entire mixture, rather than its individual sources.

1.3.2 Extent of Reverberation

In extent of reverberation the listener perceives the

overall level of reverberation of implied acoustic

environments. Music engineers sometimes include unre-

alistic reverberation and room level cues for effect.

Therefore it is difficult to claim strict correspondence

between extent of reverberation and room level, as the

latter indicates a physical space that could be actualized

in the natural world. However, extent of reverberation

was partially motivated by the room sound level

described in [21] as:

The level of sounds generated in the room as a result of the

sound source’s action, e.g., reverberation—i.e., not extra-

neous disturbing sounds. Disregard the direct sound from

the sound source.

It has been noted in [6] and elsewhere that the reverberant

sound field contributes to LEV. As discussed in Section

1.1, LEV is considered one of the primary components of

spatial impression by acousticians and is a shared

attribute for assessing spatial display quality. We note

that the extent of reverberation might be most accurately

described as an attribute of space, rather than a spatial

attribute [23].

1.3.3 Extent of Immersion

Audio recordings can impart a sensation of surrounding

or immersion to a listener. Music engineers may promote

immersion through audio effects that cannot be repro-

duced by acoustic environments. While envelopment

seems like an appropriately descriptive term for immer-

sion, we avoided its use for two reasons. First,

envelopment is closely associated with reverberation in

acoustics, and we aimed to model the perception of

reverberation separately. Second, envelopment is listed as

a significant attribute in [21] with respect to the sources

and the physical room. However, our concept of

immersion embodies virtual environments as well as

physically existing rooms. Our attribute ‘‘extent of

immersion’’ was defined as a global relation which does

not directly consider the room or the sources. We were

partially motivated by presence [21], but without the

requirement of a realizable acoustic environment:

The experience of being in the same acoustical environ-

ment as the sound source, e.g., to be in the same room.

Even though the term ‘‘immersion’’ does not arise in

Table 1, we felt that immersion was appropriately

descriptive for the sensation we were considering, and

would be understood by our subjects as not necessarily

relating to an existing physical environment.

2 QUANTITATIVE ANNOTATION

To the best of our knowledge a quantitative model of

spaciousness for audio has only been developed with

respect to the quality of spatially reproducing systems.

For instance, QESTRAL [24]–[27] is an artificial listener

designed for evaluating the quality of reproduced audio

across a broad range of program material, including

television. Our model is designed for the predictive

judgment of spatial quantity in musical recordings, rather

than spatial quality of reproducing systems on arbitrary

Table 2. Definitions of learning concepts as shown to

subjects in study.

Spatial Attributes to Rate

The three spatial attributes that we are going to ask you to

rate are the width of the source ensemble, the extent of

reverberation, and the extent of immersion.

� The ‘‘width of source ensemble’’ of a sound is how

widely spread the ensemble of sound sources appears to

be. In other words, if a sound appears to radiate from a

single point, then it is less wide. If it appears to radiate

over a larger area, or if its source of radiation appears

blurry, then it is more wide.

� The ‘‘extent of reverberation’’ of a sound is the overall

impression of how apparent the reverberant field is. The

more aware you are of the reverberation in the clip, the

higher its extent.

� The ‘‘extent of immersion’’ is how much the sound

appears to surround one’s head. If you perceive the

sound as primarily radiating from a single location in the

front or to the side of you, then its extent of immersion

is low. Rather, if the sound appears to wrap around your

head, it is more immersive.
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source material. In other words, we model how spacious a

musical recording is, and our model is not motivated by

estimating the spatial degradation of the source material.

The model we present in this paper is trained solely on

stereophonic music recordings, whereas QESTRAL is

designed for larger multichannel formats.

In order to train and test a predictive model, we

required human subject assessments of stereophonic

music recordings along the three dimensions outlined in

the last section. We performed two data collection

experiments—one online and one in a laboratory. The

experiments were similar in nature. They differed in that

the first targeted a larger subject base, at the acknowl-

edged cost of poorly controlled experimental conditions,

and the second optimized experimental control at the cost

of subject pool size. We hoped that we would find high

consistency across experiments and subjects, and low

correlation across dimensions in the responses. This

would support the hypothesis that our chosen dimensions

could be perceived consistently by subjects in different

experimental conditions and with different backgrounds,

and that the dimensions exhibited a well-rounded

representation of perceived spaciousness. This section

explains how the musical recordings were selected,

segmented, and annotated in the two experiments, and

presents our analysis of the data.

2.1 Materials and Methods

2.1.1 Music

The songs in our database were selected from an online

music web site1 that allows musicians to disseminate their

work to the public in MP3 format. As a large repository of

free music, the web site allowed careful selection of

appropriate recordings. Music was picked with the

following criteria in mind: it should be representative of

multiple genres; it should be unfamiliar, so as to avoid

bias by recognition; it should represent the major parts of

a song; and it should be spatially consistent. By imposing

these criteria we aimed to achieve a wide breadth in the

extent of spaciousness for our database.

An equal distribution of songs were selected from each

of the popular genre categories on the site. These were alt/

punk, classical, electronic dance, hip-hop, R&B/soul, and

rock/pop. We excluded genre categories that were

underrepresented on the site, such as international and

jazz so as to have enough within-genre material to choose

from. The genre label for each song had been selected by

the artist who uploaded the song. We note that there was

high variability in the interpretation of genre across the

songs, and the preceding genre categories should not be

taken too literally. The final list of songs was arguably

representative of a broader range of categories and

subcategories.

None of the songs that were picked had been

commercially distributed on a large scale. Therefore they

were likely to be unfamiliar to listeners. A musical

segment was chosen from each song so as to fall into

either a verse, a chorus, or a (nonvocal) bridge category.

Twice as many bridge sections were included as verses

and choruses so as to have a roughly equal number of

lyrical and nonlyrical sections. We promoted spatial

consistency by drawing song segments from within

structural components of the music. We observed that

spatial consistency was higher, for instance, if a song

segment was drawn from within a verse, rather than

across a verse and chorus. We avoided imposing our own

biases of spaciousness upon the data set by not selecting

segments based specifically upon their spatial attributes.

There were a total of 50 song segments. All were stereo

recordings and were in compressed MP3 format. Each

song segment was 7 seconds in duration, with a 50-ms

fade-in and fade-out to avoid clicks. No segments were

chosen from the beginnings or endings of songs. While it

would have been advantageous to use higher audio

quality for our evaluations, MP3s were chosen so that we

could reach a wider audience by streaming compressed

audio in our online experiment. It is possible that the

overall spatial quality of our data set was lower than if we

had used for example PCM recordings. Since we are

interested in comparatively quantifying the extent of

spaciousness rather than the quality of spaciousness, we

deemed this as acceptable information loss. It would have

been desirable to have a larger collection of songs in our

database to train and test the model. However, if we had

used more song segments, it would have been at the price

of collecting fewer subject ratings per song.

2.1.2 Subjects

Subjects were recruited for the online experiment by

posting advertisements on nearly 20 web forums for

musicians and music producers. Music-specific forums

were targeted so as to recruit a high proportion of

experienced listeners. The advertisement summarized the

nature of the experiment and instructed interested parties

to visit the experiment’s web site. For the laboratory

experiment 20 paid subjects were recruited by posting

advertisements on several email lists targeted to music

technology and music performance students. Informed

consent was obtained for both experiments, which were

approved by the New York University Committee on

Activities Involving Human Subjects.

There were 78 participants across both studies. Online

participants, of which there were 58, varied in age from

approximately 18 to 65 years of age and their residences

were distributed across 19 countries. They had varying

degrees of experience regarding work or study in a music-

related field, with some claiming up to 40 years of

experience, and the participants were dispersed in the

number of hours a day they spent listening to music. Subjects

in the laboratory experiment were rather homogenized

compared to the online experiment. They were distributed

over a smaller age range (mostly 18–25 years old), they were

all U.S. residents, and they were each active workers in a1MP3 Music Downloads, http://www.mp3.com/.
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music-related field. The laboratory subjects were asked to

self-assess their level of critical-listening ability on a scale of

1 to 5. Most subjects rated themselves highly, at 4 or 5.

It is always desirable to have a large subject pool for

subjective studies. However, high-quality data collection

is expensive. To remain within our budget of resources,

our laboratory experiment targeted a small group of

subjects who were experienced listeners and would

provide reliable data in a controlled environment. The

online experiment was designed to collect data from a

larger subject pool, at the cost of experimental control.

Section 2.2 provides a quantitative analysis of the

relationship between the two subject pools.

2.1.3 Environment and Monitoring

Both experiments were conducted on the same web-

based interface using a series of interactive web pages.

Before participants began the online experiment, they

were informed that headphone use was a requirement of

the study. We did not attempt to control the type of

headphones or acoustic environment experienced by

subjects in the online experiment. In the laboratory

experiment all participants took the test in the same room

(at staggered times) using the same model of high-fidelity

open-back headphones, Sennheiser HD650. Subjects in

both experiments were presented with a headphone

calibration screen. A series of simple tones were played

to facilitate volume adjustment and subjects were

instructed to set their volume so that the tones were

heard easily, but not too loud. For the laboratory

experiment the volume was preadjusted for each subject

before they went through their individual level adjust-

ments. All subjects in the laboratory experiment except

for one kept their volume unchanged from the starting

level, implying that we had chosen a comfortable

listening volume for the experiment.

2.1.4 Subject Training

Subjects were presented a short training session by the

user interface before the experiment’s official onset. On

the first screen (Table 3), the term ‘‘spatial attributes’’ was

defined. Next, participants were informed of the defini-

tions for ‘‘source ensemble’’ and ‘‘reverberant field.’’

After reading the directions, the subjects were asked to

listen to a nonmusical mixture of sources (a room of

applause) and focus their hearing. Table 4 shows the exact

definitions and directions. Finally, definitions of the three

spatial attributes were given (shown in Table 2). For each

of these attributes, participants were again asked to listen

to applause and concentrate their attention with respect to

each attribute (Table 5). The applause track exhibited

characteristics of the three spatial dimensions. Partici-

pants were not told exactly how spacious the recordings

were expected to be perceived, so as to avoid biasing their

judgments. After the subjects completed the training

phase, a web page with a real musical example was given

for practice.

2.1.5 Experiment

Subjects were asked to rate, on a bipolar 5-ordered

Likert scale from ‘‘less’’ to ‘‘neutral’’ to ‘‘more,’’ the

extent of each of the dimensions for each test song. The

ratings we relative to the subjects’ own self-perceptions

of the realizable range for each dimension. There was a

GUI button activating a pop-up screen with the term

definitions, in the case that a participant needed to be

reminded. The order of the songs was randomized so as to

eliminate any order bias across participants.

For the online experiment a web browser cookie-

tracking mechanism prevented any subject with their

browser cookies enabled from participating more than

once. Participants were allowed easy exit out of the

experiment via an exit icon in the corner of the screen.

The experiment proceeded until all 50 song excerpts were

assessed, or the participant exited.

In the laboratory experiment subjects were required to

rate all 50 song excerpts in the data set. They had the

additional benefit of an experiment investigator on hand

to precisely answer questions about the terms in the

experiment. The average time for completion of the

laboratory experiment was approximately 30 minutes.

2.1.6 Postprocessing and Outlier Removal

The results of the combined experiments provided 2523

ratings over 50 songs and three dimensions of spacious-

ness. Ratings were transformed from a Likert scale to a

linear numerical scale. Our work assumes that subsets of

music listeners perceive spaciousness in similar ways. We

removed outliers from the data set so that we could model

a population of listeners whose perceptual responses

approximate a normal distribution. In a normal distribu-

tion 99.73% of the data lie within three standard

Table 3. Definition shown to subjects for ‘‘spatial attri-

butes.’’

Definition: ‘‘Spatial Attributes’’

In this study, we ask participants to evaluate spatial

attributes of recorded music. When we refer to ‘‘spatial

attributes,’’ we are referring to characteristics of the

sound that leave the listener with impressions concerning

the physical or virtual space that the instrumentalists are

performing in.

� Impressions of space can include the size and depth of a

performance hall, the materials that the hall is

constructed of, the relative positions of the performers

within the space, and the relative position of the listener

within the space, among other things.

� They can also include impressions of space that are

created through artificial means, such as panning, digital

reverberation, echos, delays, or other mixing strategies.

On the next page, we will describe the specific spatial

attributes that we want you to rate.
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deviations of the population mean. We removed all song

ratings that exceeded this threshold, as calculated for each

song–dimension pair. In addition if a participant was

responsible for more than one outlier rating in a given

dimension, his or her ratings were removed entirely from

the dimension, so as to help ensure that our data were

representative of similarly perceiving subjects. The

ratings for each dimension were then standardized to

zero mean and unit variance. By doing so, the trends of

the ratings for each dimension were preserved, while at

the same time shifting them into a standardized space for

easy cross comparison. Fig. 2 shows the sorted mean

value and standard deviation for each song for the three

standardized dimensions.

2.2 Results

2.2.1 Laboratory and Online Experiments

It can be expected that the ratings in the online

experiment would be less stable than the ratings from the

laboratory, as it was not possible to control the

experimental conditions for each online participant.

Indeed, the average variance per song was consistently

higher in the online experiment. We performed ANOVA

on the average song ratings between the two experiments

for each dimension. All tests passed the null hypothesis at

the 99% confidence level that the distributions share the

same means.

Table 4. Definitions shown to subjects for ‘‘source

ensemble’’ and ‘‘reverberant field,’’ and directions asking

subjects to listen to an audio excerpt of applause.

Components to Listen For

The two components of the music clips that we will ask

you to listen to will be the source ensemble and the

reverberant field.

� The ‘‘source ensemble’’ is the entire ensemble of

instruments, including vocalists, percussion, keyboards,

string instruments, and other instruments that comprise

the musical recording. There may be few or many,

depending on the production. Excluded from this group

is any sound that cannot be associated with radiating

directly from an instrument, such as echos and room

reverberations.

� The ‘‘reverberant field’’ is the portion of the sound that

does not radiate directly from the ensemble of sources.

The reverberation of the room, or the sound that persists

after an instrument plays a note, in addition to other

sounds that are directly related to the room are included

in this group. When listening for the reverberant field,

you should also include effects that have been added in

production such as artificial reverberation, echos, and

delay.

When you press the play button below, you will hear a

room of applause. Listen carefully and see if you can

identify the source ensemble (the hands clapping), and

the reverberant field (the sound that the room adds to

the individual claps).

� You can think of each discernible hand clap as an

independent source in the ensemble. In a normal musical

excerpt, there would never be this many sources to listen

for. However, this example should illustrate that each set

of hands clapping can be thought of as a single source

in an ensemble of sources.

� The reverberant field is especially apparent during the

clap pauses. It is the sound of the room that persists

when the sources (clapping hands) cease. Although the

reverberant field is most apparent during the pauses, it

may also be apparent during the clapping portions. The

reverberant field in this excerpt is a natural sounding

one. However, some music clips may have reverberant

fields that sound more artificial.

Table 5. Directions asking subjects to listen to applause

while considering the attributes.

When you press ‘‘play,’’ the same segment of applause will
play.

� Try to imagine how wide the stage that the hand claps

occupy is. This is the ‘‘width of the source ensemble.’’

� Think about the overall amount of reverberation you hear.

This is the ‘‘extent of reverberation.’’

� If you have the sensation that the hand claps are

wrapping around your head or arriving from behind you,

then there is a higher ‘‘extent of immersion.’’

Fig. 2. Sorted means and standard deviations of standardized

ratings for each song and each dimension of spaciousness.
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Then we computed pairwise t-tests for each song and

dimension to test the null hypothesis that the average

ratings for the laboratory and online experiments share

the same means for each song. Since different experi-

mental conditions were being compared, the p values

were calculated assuming unequal variance, implement-

ing Satterthwaite’s approximation for standard error [28].

Out of 50 songs and three dimensions we found that the

null hypothesis could be rejected at a 99% confidence

level for only two songs in the immersion dimension. This

leads us to believe that the data from the online

experiment come from a similar distribution as the

ratings from the laboratory experiment and that they can

be combined, despite the different experimental condi-

tions.

2.2.2 Experienced and Unexperienced Listeners

We wanted to test whether ratings by more experienced

listeners would be statistically different from a population

with less listening experience. First we compared subjects

who listen to more than 4 hours of music a day to those

who do not. No statistical difference could be found.

Second we tested subjects who work or study in a music-

related field versus those who do not. Only the immersion

dimension of one song showed a significant difference at

the 99% confidence level between experienced and less

experienced listeners.

2.2.3 Headphone Use

An additional concern was whether the constraint of

headphones would adversely affect the reliability of

ratings. Headphone listening can inhibit perceived

externalization, a factor that might affect the perception

of spaciousness negatively. At the same time, using

headphones is necessary to minimize the effect of any

unrelated environmental acoustic factors of the listening

environment on the experimental framework. If head-

phone-inhibited externalization affects perceived spa-

ciousness, it might be hypothesized that subjects who

listen to music predominantly through headphones will be

better adapted to perceive differences in spaciousness

when using headphones. In our last t-test we compared

(with an equal variance assumption) subjects who usually

listen to music through headphones with those who

usually listen to music through loudspeakers. Once again,

only two instances across 50 songs and three dimensions

were found to differ significantly. It is possible that our

outcome might have been different had the experiment

been performed on loudspeakers. However, we can

assume that subjects’ experience with using headphones

had a negligible impact on the results.

2.2.4 Between-Song Variability

Our data set is intended to represent a diversity of

perceived spaciousness along each dimension. To validate

this, F statistics were calculated for the songs in each

dimension. The ANOVA p values for all were nearly zero

(F(49,2354)width ¼ 29.66, F(49,2333)reverb ¼ 14.59,

F(49,2345)immersion ¼ 18.74), showing that it is highly

unlikely that the average song ratings share the same

means.

2.2.5 Correlation between Dimensions

Finally we wanted some sense of how closely related

the ratings along each dimension were to each other. If

any two dimensions are highly correlated, it is possible

that a model of one may be used to predict perception of

both. We averaged the subjective ratings for each song,

and the Pearson’s correlation coefficient R was calculated

between dimensions. These coefficients are reported in

Table 6. The p values associated with R indicate that all

correlation coefficients were significant at the 95%

confidence level. The strength of the width–reverberation

correlation was low, indicating that subjects did not tend

to rate songs similarly for these dimensions. There was a

medium amount of correlation between reverberation and

immersion, and the width–immersion correspondence was

found to be highly correlated. This knowledge might be

useful when considering future computational models for

the perceived attributes.

3 COMPUTATIONAL MODELING

After having collected ratings for spaciousness we set

out to model them computationally by finding mappings

between objectively measurable audio signal characteris-

tics and subjective human ratings. Our approach to

building an objective-to-subjective mapping function is

shown in Fig. 3. On the left there is an audio feature space

describing components of the music recordings, along

with three learning concepts. The audio features are

objective signal descriptors inspired by research in MIR.

The learning concepts are the three dimensions of

spaciousness outlined earlier. In the middle there are

necessary dimensionality reducing and parameter optimi-

zation steps. We first used a correlation-based feature

selection and subset voting scheme to narrow the feature

space. Then we conducted a grid search for the best

parameterization of an exemplar-based machine learning

algorithm. In this work we used support vector regression

for machine learning, which is depicted on the right. The

stages of our approach are described hereafter, followed

by analysis.

Table 6. Pearson’s correlation coefficient R for averaged

ratings between dimensions.

Width–
Reverberation

Width–
Immersion

Reverbation–
Immersion

R 0.3186 0.8745 0.5679

p* 0.0241 1.07 3 10�16 1.70 3 10�5

*p value of correlation—chance probability of correlation

being equal to or greater than R.
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3.1 Materials and Methods

3.1.1 Computing Environment

All computation was executed on a Mac dual-core 2.4-

GHz computer with 4 GB of memory on the Unix

operating system. Machine training and testing was

conducted in Weka, an open-source computing environ-

ment for machine learning [29].

3.1.2 Learning Concepts

The learning concepts were the same dimensions

discussed earlier, namely, width of source ensemble,

extent of reverberation, and extent of immersion. The

averaged responses per song from Section 2 were used as

the target values for the machine training and testing

tasks.

3.1.3 Audio Feature Space

The entire audio data set was transformed into a

multidimensional feature space. Features are descriptors

of the audio signal obtained through signal filtering and

analysis methods. In general one hopes to extract the most

meaningful properties of an audio signal for the task at

hand by reducing it to a set of descriptive numerical

vectors.

Since we do not know which audio features in the

literature are most relevant to perceived spaciousness, we

start with a verbose set and later attempt to remove the

less informative features. We batch-generated our verbose

feature set using the entire feature-extracting capabilities

of the MIR toolbox [30] at its current release version.

Most researchers in MIR extract features from either one

or the sum of channels in stereophonic recordings. We

chose to use the left–right difference signal (called the

side signal in MS recording) so as to preserve any spatial

cues contained in the uncorrelated channel data.

By choosing to use only the side signal, we introduce

some signal loss to the algorithm. It would perhaps be

beneficial to use the monosummed signal in addition to

the difference signal. By doing so we would be analyzing

the full uncompressed signal in a transformed space, and

we would also double the initial dimensionality of the

feature space. Unless the left and right channels of the

stereophonic mix are completely in phase or 1808 out of

phase, there will likely be signal redundancy between

monosummed and side signals. An oversized redundant

feature space will promote overfitting and feature

selection bias, especially when the data set is small. We

were therefore required to introduce this loss to the

system.

The entire set of features, which are partitioned into

categories of dynamics, rhythm, timbre, pitch, and spatial,

is listed in Table 7. For most features the recording frame

was decomposed and feature extraction was performed

independently on each frame. Some features, such as

fluctuation, were calculated on the entire audio segment.

The frame-decomposed features were summarized by

their means, standard deviations, and slopes, and by their

estimated period frequency, amplitude, and entropy. The

size of the extracted feature space was 430 dimensions by

50 songs.

The toolbox includes several well-known features that

are widely used for MIR and that are part of the MPEG-7

specification, such as MFCCs, spectral centroid, and

spectral flatness. These are described in detail in [31]. For

the remaining features we paraphrase the feature

summaries provided by the MIRtoolbox User’s Manual

[32] and provide pointers to the original source literature.

The rhythm features are largely derived from an onset

detector, except for fluctuation, which is a subband-based

measure of periodicity [33]. Brightness is a measure of

the high-frequency energy in the signal [34], and

skewness and kurtosis are the third and fourth central

moments of the spectrum, respectively. Entropy attempts

to quantify the amount of information in a signal by

characterizing its uncertainty [35], and roughness is a

measure derived from Plomp and Levelt’s theory on

dissonance [36]. Irregularity is the variability in ampli-

tudes of the partials in the spectrum [37], and inharmo-

nicity is an approximation of the energy outside of the

harmonic series, as calculated from an estimated

fundamental frequency. Low energy is the percentage of

frames having energy below a relative threshold [38]. A

chromagram places the spectral energy in pitch-class bins.

Key clarity is a probability estimate associated with a

frame’s estimated key. Mode is an estimation of whether

a frame is in a major or minor key. Finally the harmonic

change detection function measures the flux around a

tonal centroid [39].

We included two spatial features that were not part of

the MIR toolbox. The first, wideness estimation, estimates

the width of a distribution of mixed sources in a recording

by calculating an azimuthal histogram of spectra using a

phase cancellation strategy. The latter, reverberation

estimation, attempts to measure the quantity of reverber-

ation in a mix using the residual signal from linear

Fig. 3. Block diagram for building and optimizing mapping functions.
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prediction coding. Both measurements were originally

reported in [40].

The feature space was normalized to the range [0,1]

and transformed into a principal-component space. The

principal components that accounted for the 5% least

variance in the data set were discarded, and the data set

was transformed back to its original attribute space. This

transformation and filtering of data by principal-compo-

nent analysis is an often used means of performing data

cleansing on a feature space [29].

3.1.4 Feature Selection

Because the learning concepts used in this work are

new, there is no literature that shows which features are

the best for predicting perceived spaciousness. A large

dimensional feature space can adversely affect the

performance of a machine-learning algorithm and adds

unnecessary complexity to the model. We therefore

sought methods for reducing the feature space to a subset

that was optimally robust for modeling perceived

spaciousness.

For each target learning concept correlation-based

feature selection (CFS) was performed with a greedy

stepwise forward search heuristic. CFS chooses features

that are well correlated to the learning target, yet exhibit

low cross correlation with each other, and has been shown

to be good for filtering out irrelevant or redundant

features [41].

However, supervised attribute selection such as CFS

can overfit features to their learning concept when the

same data set is then used for training a model [42]. To

minimize subset selection bias, a percentile-based voting

scheme with 10 3 10-fold cross-validated attribute subset

selection was designed. For each run the data set was

randomly partitioned into ten folds. Then CFS was run ten

times, leaving one fold out for each iteration.

Due to random partitioning of the data set, different

feature subsets were chosen across folds and runs. We

placed the features into percentile bins based upon how

many times they had been selected. Eleven feature subsets

with monotonically decreasing sizes were generated in

this way, ranging from the full feature set to only features

that were selected 100% of the time. Each of the eleven

feature subsets was then used to learn a nonoptimized

support vector regression algorithm on each of the

learning concepts. The subset that performed best for

each learning concept was voted as the final subset for

further system optimization and training.

3.1.5 Support Vector Regression

For each learning concept a support vector regression

model was implemented with the sequential minimal

optimization (SMO) algorithm developed in [43]. Support

vector machines, which optimize a tradeoff between

function error and function flatness, have been shown to

generalize well to a number of classification and

regression tasks. In support vector regression implemen-

tation an error threshold n is selected, below which

instance errors will be invisible to the loss function. A

cost constant C determines the flatness of the function and

helps to prevent it from overfitting the data. The higher

the value of C, the more influence errors outside of n have

Table 7. List of audio features and their categories.

Category Feature

Dynamics Rms energy

Rhythm Fluctuation centroid*

Attack times

Fluctuation*†

Attack slopes

Tempo Tempo envelope

autocorrelation†

Timbre Zero-cross rate

Spectral skewness

Spectral entropy

Irregularity

D MFCCs (13)

Spectral flux

Spectral centroid

Spectral kurtosis

Spectral flatness

Irregularity spectrum†

DD MFCCs (13)

Brightness

Rolloff (95%)

Roughness

Inharmonicity

Low energy*

Spectral spread

Rolloff (85%)

Roughness spectrum†

MFCCs (13)

Low-energy rms

Pitch Chromagram†

Harmonic change

detection

Pitch Key clarity Mode

Spatial Wideness estimationjj Reverberation estimationjj

Summary functions‡ Mean

Period amplitude

Standard deviation

Period entropy

Slope Period frequency

*Feature was not frame decomposed.
†Signal peak position and peak magnitude were calculated as features.
jjFeature was summarized by mean alone.
‡Used on frame decomposed features.
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upon the function. The SMO algorithm is a means of

improving computational efficiency when analyzing large

data sets. The data sets that were used in this work were

relatively small, rendering SMO irrelevant to the

discussion.

3.1.6 Regression Kernel

A kernel function generalizes regression models to

nonlinear fits. Our support vector model employed a

polynomial kernel, K(x,y)¼ (, x,y . þ 1)p, chosen as the

best in an informal search. Support vector machines

perform, to some extent, similarly independent of the

kernel type if the kernel’s parameters are well chosen

[44]. In the case of a polynomial kernel the only

parameter to choose is the polynomial exponent p.

3.1.7 Machine Training and Testing

An exhaustive 10 3 10-fold multiple CV grid search for

the optimum values of the support vector machine cost C

and its kernel exponent p was conducted. The value of n
was set at 1 3 10�3 for the entirety of this study. The

optimal parameterization was considered to be the one

that yielded the lowest relative absolute error (RAE).

RAE is the sum of all errors normalized by the sum of the

errors of a baseline predictor. The baseline predictor we

used was zero-R, which selects the mean of the target

values for every instance. An RAE error of 0% would

denote perfect prediction, 100% would indicate the same

error as the baseline predictor, and error above 100%

would indicate worse performance than the baseline

predictor. The model that yielded the lowest RAE was

retained and tested a final time.

3.2 Results

3.2.1 Feature Subset Percentiles and Sizes

In machine learning applications the dimensionality of

the feature space is usually limited so as to minimize

overfitting and model complexity. However, we had no a

priori knowledge of the best feature size. We therefore

imposed no constraints on the feature subspace dimen-

sionality and used CFS and a voting scheme to choose the

best feature subsets. Fig. 4 shows the results of testing

feature subspaces on the nonoptimized machine. The

width dimension shows a minimum with 6 features at the

50th percentile; the reverberation dimension shows 12

features at the 40th percentile, and the immersion

dimension shows 14 features at the 20th percentile.

Considering the small size of the data set (50 songs), the

dimensionality of these feature spaces can be seen as

relatively large. This may be due to the fact that most of

the features were not specifically designed to extract

spatial cues.

All predictors show two local minima: width at the

20th and 50th percentiles, reverberation at the 10th and

40th percentiles, and immersion at the 20th and 70th

percentiles. This indicates that there might have been

more than one optimal feature subset to use. The

steepness of the error curves between the 0th and 10th

percentiles shows that simply using the entire feature set

without any feature selection would greatly inhibit the

performance of the support vector algorithm. The poor

model performance using the full (0 percentile) feature

space illustrates model overfitting and underscores the

importance of feature selection. We believe that our

method for feature subset selection was successful at

choosing the best features, while minimizing model

complexity and avoiding selection bias.

3.2.2 Selected Features

A summary of the final feature subset for each learning

concept is shown in Table 8. Features that were selected

for more than one concept are shown in boldface. The

width and immersion dimensions shared the most features

in common. This is understandable as these dimensions

also shared the highest correlation among annotations.

This fact may indicate that the dimensions are highly

similar, that subjects assumed them to be the same, or that

there exists a song-selection bias in the data set.

When examining the automatically chosen feature

subsets we may wish to draw conclusions concerning

which features are most related to spatial perception and

perception of space in recorded music. However, we note

that the features were selected with an unoptimized

model. In addition it is difficult to speculate whether

features were selected because of their perceptual

relevance or their association to the source material. For

instance, it is possible that the spectral flatness of the side

channel influences our perception of the width of the

source ensemble. However, it is also possible that the

Fig. 4. Performance of nonoptimized machine on monoton-

ically decreasing feature spaces. – – – baseline performance;
..
.

best performance.
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songs in our database tended to have a correlation

between spectral flatness and wideness, without signify-

ing any meaningful perceptual relationship. Finally we

note that while most features are probably not individu-

ally useful, the correct combination of features is.

Therefore any discussion of the importance of a single

feature to a learning concept requires significant prior

investigation. Such an investigation is warranted, but was

outside the scope of this work.

3.2.3 Parameter Search

The error surfaces for the parameterization of each

machine are given in Fig. 5. These show the RAE for

each value in the grid search for optimum C and p

values. It can be seen that the surfaces are not flat and

that a globally optimal parameterization can be found for

each. Yet they depict few local minima and are relatively

smooth, suggesting that other parameter choices in

between the grid marks would not have improved results

significantly. It is worth noting that the flattest error

surface, that for extent of reverberation, is also the one

that had the best R value (as discussed in Section 3.2.4),

indicating robustness against parameter choices. In

addition it was the dimension that exhibited the deepest

local minimum in the feature subset search (Fig. 4). This

may indicate that, of the three learning concepts, the

feature space used for reverberation was the best

matched.

3.2.4 Model Performance

The results of testing the optimized models are listed in

Table 9. The RAE value was lowest for the width and

immersion dimensions, at 62.63% and 64.36%, respec-

tively. The reverberation dimension performed slightly

worse, with 67.20% RAE. However, by all other

measurements of accuracy, the predictor for extent of

reverberation performed best.

All predictors had a correlation coefficient R of 0.73 or

higher to the actual values. An R value of 0.0 would

denote a complete lack of correlation between predicted

and actual values. The coefficient of determination R2 was

highest for reverberation, indicating that the function

accounted for 62% of the variance in the test set.

By examining RAE for all models we see that the worst

predictor was at least 32% more effective than the

baseline predictor. Therefore we believe that the accuracy

of the models suggests high predictive capability for each

of the perceived spatial dimensions. These results are

encouraging and suggest that objective measurements of

recorded music may be mapped successfully to perceived

spaciousness, and perhaps to dimensions of music

perception that have not been examined in this work.

Table 8. Selected features after running on a nonoptimized machine.*

Concept Feature*
Summary
Function† Feature

Summary
Function† Feature

Summary
Function†

Width (50 %)jj Tempo envelope

autocorrelation

PM

PF Spectral flatness PA Wideness estimation M

Reverberation

estimation

M D MFCC 5 S DD MFCC 11 M

Reverberation (40 %) MFCC 3 M MFCC 3 PE MFCC 3 S

DD MFCC 13 PA Key clarity S Chromagram PM PF

Harmonic change

detection

PA Spectral flux PA Pitch PA

D MFCC 10 S D MFCC 10 PF D MFCC 13 S

Immersion (20 %) MFCC 6 PE Spectral centroid PE Tempo envelope

autocorrelation

PM

PF

Spectral flatness PA Spectral kurtosis SD Wideness estimation M

Reverberation

estimation

M Mode PE Pitch PF

D MFCC 7 S D MFCC 5 S D MFCC 11 S

D MFCC 11 M DDMFCC 11 M

*Features in boldface were picked by algorithm for more than one learning concept.
†PM—peak magnitude; M—mean; SD—standard deviation; S—slope; PF—period frequency; PA—period amplitude; PE—

period entropy.
jjFeature subset’s percentile group.
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4 DISCUSSION

Our findings are significant to engineers and music

listeners—modeling such an important attribute of music

gives us a new perspective from which to analyze and

process digital musical signals. The work we present leads us

to encouraging conclusions. However, there are several

limitations to the study, which we will discuss in the

following paragraphs, as well as suggestions for future work.

The choices for the three spatial attributes were

motivated by work in related fields, as well as our own

intuitive experience with recorded musical signals.

Because the attributes are nonstandard and have not been

examined in formal experiments, it is difficult to know

whether they are semantically and perceptually valid.

Informally our subject feedback showed us that the spatial

definitions were understood by our participants. However,

further attribute elicitation and validation should be done

for the discovery of significant perceived attributes of

spaciousness as they relate to produced musical signals.

The mid/side decomposition of stereophonic audio is a

lossless transformation of the left and right channels into an

alternate space. It is well known that both the mid and side

components of stereophonic sound carry spatial cues. Two of

the primary challenges to successful machine learning are

avoiding feature selection bias and overfitting. These are

more difficult to prevent when using a small data set or a

large feature space. Because our data set was relatively

small, we needed to minimize the size and redundancy of the

feature space. We excluded the mid signal from our model,

thereby introducing informational loss to the system. It is

possible that the model’s performance might have been

different if we had used the mid signal instead. We

encourage further work that will examine the comparative

impact of the mid channel on the model’s performance or

that concurrently will investigate both signal components on

a much larger data set.

Our feature space included only two spatial features. In

recent years there have been increased efforts to extract

spatial information from audio. These include features for

the assessment of spatial quality for multichannel

reproduction [26], [45], envelopment resulting from

surround sound recordings [46], and spatial analysis of

binaural recordings [47]. Many of the metrics in the

literature convolve the signal with a head-related transfer

function at different angles of rotation, and employ

various forms of the interaural cross-correlation function

or proportional energy and temporal measurements.

Because our experiment required the use of headphones

and disallowed free-field listening, we were not sure how

robust such metrics would be for the model. However,

given the limited number of spatial features in our system

and our strategy of using an initial verbose feature set, it

may have been advantageous to include other features.

We welcome such further efforts with more spatial

features in general or smaller, more targeted feature sets.

Our resources were limited, that is, we were not able to

employ a large number of experienced listeners for the

laboratory experiment. This constraint also limited the

number of songs we could use in our database. With more

resources we would have conducted a larger scale

laboratory experiment, included more songs in the

database, and used a higher quality audio format. It is

difficult to speak about the scalability of our model to

larger populations without a broader experiment. We

hope that others in the research field will examine similar

MIR-inspired methods of modeling on larger and more

diverse populations.

Despite the limitations, our model showed good

predictive accuracy and encourages further development

of this and related frameworks. For instance, this paper

underscores an interest in the semantic relationship

between individual features and perceived spaciousness.

We used support vector regression with a polynomial

kernel to model the learning concepts. Because of the

nonlinear nature of kernel methods, we cannot interpret

directly the meaningfulness of individual features to the

model. Yet other methods of machine learning (such as

Table 9. Model performance.*

Width Reverberation Immersion

RAE(%) 62.63 67.20 64.36

Correlation

coefficient R

0.73 0.79 0.76

Coefficient of

determination R2

0.53 0.62 0.58

*All results are averaged from multiple CV.

Fig. 5. Relative absolute error surface for machine param-

eter grid search of kernel exponent p and machine cost C.
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decision trees) allow the examination of individual

features as they relate to the outcome of the model. We

look forward to future work with other machine-learning

algorithms, as well as semantic analyses of the most

successful feature sets.

By parameterizing an important perceived attribute of

music and mapping it to measurable quantities of digital

audio, a meaningful way of accessing music is provided.

We believe that more research on computational models

might yield methods for processing signals for top-down

control of perceived spaciousness. We can use the

parametric EQ knob as a metaphor for such signal

modeling and processing. With additional research in this

area, the spatial perception of music might be controlled

directly by turning one or several spatial perception

knobs. Finally this paper presents a framework for

modeling a perceived attribute of music that is directly

tied to music production. We would like to explore

generalizations of this framework to other production-

related percepts. These might include concepts such as

vocal clarity, rhythmic salience, or listening fatigue.

5 CONCLUSION

We have presented a system for computationally

modeling three dimensions of spaciousness in recorded

music. First we discussed the concept of spaciousness in

the context of previous work in other music-related fields.

We outlined a parameterization of spaciousness by three

dimensions—the width of the source ensemble, extent of

reverberation, and extent of immersion. By conducting

two human subject experiments a newly annotated set of

stereophonic music recordings was generated along the

three dimensions of spaciousness. Lastly a support vector

regression function and nonlinear kernel were used to

map the music annotations to a set of signal descriptors.

Automatic feature selection was used in conjunction with

exemplar-based support vector regression to build an

algorithmic model of spaciousness. The model was

evaluated by multiple CV and found to predict spacious-

ness more than 32% above the baseline predictor. We

therefore conclude that perceived spaciousness of musical

recordings can be modeled and predicted effectively

along an arbitrary numerical continuum.
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