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Abstract
Complex Neural Networks for Audio

Andy M. Sarroff

Audio is represented in two mathematically equivalent ways: the real-valued time domain (i.e.,
waveform) and the complex-valued frequency domain (i.e., spectrum). There are advantages
to the frequency-domain representation, e.g., the human auditory system is known to process
sound in the frequency-domain. Furthermore, linear time-invariant systems are convolved
with sources in the time-domain, whereas they may be factorized in the frequency-domain.

Neural networks have become rather useful when applied to audio tasks such as machine
listening and audio synthesis, which are related by their dependencies on high quality acoustic
models. They ideally encapsulate fine-scale temporal structure, such as that encoded in the
phase of frequency-domain audio, yet there are no authoritative deep learning methods for
complex audio. This manuscript is dedicated to addressing the shortcoming.

Chapter 2 motivates complex networks by their affinity with complex-domain audio, while
Chapter 3 contributes methods for building and optimizing complex networks. We show that
the naive implementation of Adam optimization is incorrect for complex random variables
and show that selection of input and output representation has a significant impact on the
performance of a complex network.

Experimental results with novel complex neural architectures are provided in the second
half of this manuscript. Chapter 4 introduces a complex model for binaural audio source
localization. We show that, like humans, the complex model can generalize to different
anatomical filters, which is important in the context of machine listening. The complex
model’s performance is better than that of the real-valued models, as well as real- and
complex-valued baselines.

Chapter 5 proposes a two-stage method for speech enhancement. In the first stage, a
complex-valued stochastic autoencoder projects complex vectors to a discrete space. In
the second stage, long-term temporal dependencies are modeled in the discrete space. The
autoencoder raises the performance ceiling for state of the art speech enhancement, but
the dynamic enhancement model does not outperform other baselines. We discuss areas for
improvement and note that the complex Adam optimizer improves training convergence over
the naive implementation.
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CHAPTER 1

Introduction

1.1 Motivation

Neural networks and audio are tightly integrated into our lives. Because of deep neural
networks, we’re able to dictate messages to computers using automatic speech recognition
(ASR) (Chan, Jaitly, Le, & Vinyals, 2016; Shan, Zhang, Wang, & Xie, 2017; Soltau, Liao, &
Sak, 2016). We can query computers about prominent instruments in a music recording (Han,
Kim, & Lee, 2017). With neural audio synthesis, computers are able to generate realistic-
sounding speech (Shen et al., 2017) and musical tones (Engel et al., 2017), or to separate
speech mixtures into single-speaker audio streams (P.-S. Huang, Kim, Hasegawa-Johnson, &
Smaragdis, 2014).

The success of these technologies hinges on adequate machine listening and neural sound
synthesis. These are related because they each depend on a high quality acoustic model,
which represents the relationship between an audio signal and another entity of interest. In
some cases the audio signal is the input to a model (e.g., ASR); in other cases audio is the
output (e.g., neural audio synthesis); and some modeling tasks use audio as input and output
(e.g., speech enhancement). Whichever the case, the performance of a system is bounded by
the quality of an acoustic model.

Audio is represented in two mathematically equivalent ways: the real-valued time domain
(i.e., waveform) and the complex-valued frequency domain (i.e., spectrum). There are
several advantages to relying on the frequency-domain representation. First, the human
auditory system processes sound in frequency bands (Zwicker & Fastl, 2010), with the
cochlea providing a frequency decomposition similar to the Fourier transform, except on a
logarithmic scale (McDermott, 2013). When we begin (or end) a computational pipeline with

- 1 -



1. Introduction

a frequency-domain representation of audio, we are leveraging a schema that is positively
correlated to human audition. From there, a network may learn the frequency-based features
that are most informative to the task (Humphrey, Bello, & LeCun, 2013).

For many audio modeling tasks, we’re particularly interested in linear time- or shift-invariant
(LTI and LSI) systems. Room reverberation, vocal sounds, and binaural auditory cues
are outputs of LTI systems, and are obtained by convolving an input with a system’s
impulse response. This brings us to the second motivation for using frequency-domain
signals. Convolution in the time-domain is mathematically equivalent to multiplication in the
frequency-domain. If we wish to characterize the system that produced a sound, the problem
is reduced from deconvolution in the time-domain to factorization in the frequency-domain.

Here, we identify a shortcoming in the deep learning literature for audio. Most acoustic
models favor a frequency-domain representation. Yet the application of neural networks in
tandem with complex-valued audio is poorly understood, so it’s common practice to truncate
complex-valued spectra by discarding the phase components of frequency-domain audio.

We argue that the discarded phase components are informative in machine listening and
audio synthesis tasks, but that they’re often neglected because the deep learning community
has not developed dependable methods for training neural networks using complex-valued
data. We address this shortcoming, motivated by the following observations.

1. Without phase, audio is less intelligible, which impairs the quality of human and
machine listening.

2. The quality of frequency-domain audio synthesis is limited when phase is reconstructed
as an afterthought.

The following subsections provide further examination of the motivations for using complex
neural networks on machine listening and audio synthesis tasks.

1.1.1 Machine Listening

The goal of machine listening is to endow computers with the ability to “hear.” Computers
should be able to extract meaningful information from, and make human-like decisions about,
audio. In addition, they should be able to do this in a general way. For instance, humans
are particularly adept at focusing on individual sounds within a mixture of sounds. We
navigate the focus of our attention between multiple aspects of a live music performance with
ease, picking out the lead vocalist or guitarist. Bregman (1994) refers to this phenomenon
as “auditory streaming.” We deftly identify the source of an auditory stream, often among
interfering noises and among varying acoustic contexts. The audio features of a musical
instrument recorded in a concert hall versus one that is recorded on a public street might be
very different, but we’d expect a computer to identify them as the same, thereby generalizing
across varying acoustic contexts.

External sounds are filtered by the human anatomy before arriving at the inner ear (Blauert,
1997). Due to distinguishing differences in the shapes of the torso, head, and ears, an
individual’s anatomical filters, characterized by their head-related transfer functions (HRTFs),
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1. Introduction

are unique. We can approximate an individual’s HRTFs by taking measurements called
head-related impulse responses (HRIRs), in which wide-band sounds arriving from various
angles relative to a human subject are recorded using in-ear microphones. Time-domain
HRIRs are subsequently converted into frequency-domain HRTFs using the Fourier transform.

The physical anatomy characterized by the HRTF is an LTI system that provides important
localization cues, allowing one to estimate the direction of arrival of a sound source (Wenzel,
Arruda, Kistler, & Wightman, 1993). According to duplex theory (Middlebrooks & Green,
1991), human source localization depends on two auditory cues: interaural level and time
difference (ILD and ITD). The acoustic waves propagating from any sound source that is
not located along the median plane must travel different distances to the ears and therefore
arrives at different times. The ITD of binaural sound corresponds to interaural phase
differences (IPD) in the frequency-domain. It’s been established that the human auditory
system “prefers” ITD and IPD over ILD in cases where both cues are available but provide
conflicting information (Wightman & Kistler, 1992). In other words, phase differences are
incredibly important to humans when localizing sound sources.

We can simulate localization cues through binaural processing, in which a sound source is
convolved with the HRIR corresponding to a known elevation and azimuth (Wightman &
Kistler, 1989a, 1989b). Although the HRTFs corresponding to an individual are unique, it’s
been shown that humans can adapt to the HRTFs of other “good” hearers (Wenzel et al.,
1993). In other words, consider a subject who hears binaural audio associated with a second
subject having high localization accuracy. Then the first subject is able to identify the
virtual locations of sounds with similar accuracy as in free-field conditions. This is quite
astonishing, showing that humans have an incredible ability to quickly learn new auditory
localization cues.

We return to the requirement that computers make human-like decisions about sound and
that they generalize to different acoustic contexts. We might ask whether a source localization
algorithm can perform well at localizing sounds synthesized with HRTFs, that were not seen
during the training phase. If so, then the algorithm is exhibiting an ability to generalize to
different conditions, much as humans can. This question is answered in Chapter 4, in which
we train a deep complex neural network to localize a sound source in synthesized binaural
audio and test its accuracy with unseen binaural filters. Importantly, we show that complex
neural networks outperform real networks.

1.1.2 Audio Synthesis

An ideal machine-generated sound is indistinguishable from an acoustically-produced ex-
emplar. It is challenging to design a sufficient acoustic model, one that can produce
natural-sounding audio, given a model’s internal representation. This is a difficult problem
because audio is extremely high-dimensional and it has short-term and long-term temporal
dependencies.

The high dimensionality of digital audio is a consequence of the Nyquist-Shannon sampling
theorem, which states that for a given digital signal, the maximum frequency of any sinusoidal
component is one half of the sampling rate. Healthy human hearing extends to approximately
20 kHz, requiring a minimum sample rate of 40 kHz to cover the normal range of hearing. In
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1. Introduction

practice, there are several standard sample rates. For instance, audio CDs are recorded at a
sample rate of 44.1 kHz.

Audio has structure existing on multiple temporal scales. For instance, the structural
elements of speech exist at the phoneme, syllable, word, phrase, and sentence level. Towards
one end of the scales, English syllables are a few hundred milliseconds in duration (Peterson
& Lehiste, 1960), while at the other end sentences are typically several seconds in duration.
Neural audio synthesis models must capture temporal dependencies at the sample-level, as
well as at several higher orders of temporal magnitude.

In the literature, acoustic models are often based solely on the magnitude spectrogram. In
such cases, the fine-scale temporal dependencies, which are encoded by the phase spectra, are
not explicitly modeled. In the end, phase must somehow be added back to the spectrogram
as a postprocessing step for audio waveform synthesis. For several decades, the canonical
method for reconstructing waveforms from magnitude spectra has been the Griffin-Lim
algorithm (Griffin & Lim, 1984). Griffin-Lim is an iterative reconstruction algorithm that
suffers from several limitations, such as not considering cross-frame dependencies or local
regularities within a frame (Gerkmann, Krawczyk-Becker, & Le Roux, 2015).

Recently, a spate of new algorithms have emerged that provide time-domain neural audio
synthesis (Kalchbrenner et al., 2018; Mehri et al., 2016; van den Oord et al., 2016; van
den Oord et al., 2017), bypassing the need for explicit phase reconstruction. At the heart
of these models is sample-based autoregressive synthesis, where each time-domain audio
sample is conditioned on previous samples, thus explicitly modeling fine-scale temporal
dependencies. Several autoregressive methods have been proposed for modeling long-term,
as well as fine-scale, temporal dependencies. SampleRNN (Mehri et al., 2016) uses several
tiers of recurrent layers for modeling dependencies at hierarchically increasing temporal
scales. WaveNet (van den Oord et al., 2016) is a convolutional network relying on dilated
convolutions for multiscale temporal modeling.

The autoregressive nature of these models severely limits efficiency at inference time, since
the sample-level input of the model at the current timestep depends on the sample-level
output of the model at the previous timestep. These models, as first proposed, were not
able to provide real-time inference on modern hardware, severely limiting their practical
utility. Several solutions have since been suggested for increasing inference efficiency, but
these too have drawbacks. For instance, Parallel WaveNet (van den Oord et al., 2017)
provides real-time synthesis, but training it directly is infeasible. Instead, a “teacher” model
trains a “student” model to “match the probability of its own samples under the distribution
learned by the teacher” (van den Oord et al., 2017). There are yet other alternatives for
efficient time-domain neural audio synthesis. WaveRNN (Kalchbrenner et al., 2018) weakens
constraints on conditional dependency by using “subscaling.” According to Kalchbrenner
et al. (2018), WaveRNN’s subjective performance approaches that of WaveNet, but does not
surpass it.

Complex frequency-domain audio includes the fine-scale temporal structure needed for audio
synthesis. Despite this, the complex-valued deep modeling of audio has not been extensively
studied. Chapter 5 applies deep complex networks, for the first time, to the problem of
speech enhancement, in which speech audio is enhanced by rejecting interfering sounds from
a “noisy” audio signal and synthesizing a “clean” version. This task requires a strong acoustic
model for synthesizing audio, one that is absent of artifacts. Our approach uses a deep model
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1. Introduction

to learn a stochastic dictionary of complex vectors. Speech is enhanced by inferring the best
dictionary elements for synthesis.

1.1.3 Complex Neural Networks

Recent papers such as (Bittner, McFee, Salamon, Li, & Bello, 2017; Hawthorne et al.,
2017; Jansson et al., 2017; Liang, Gotham, Johnson, & Shotton, 2017; Maezawa, 2017;
Oramas, Nieto, Barbieri, & Serra, 2017) are employing increasingly deep networks for music
information retrieval and music generation. Their successes may be attributed to the fact
that, with at least one hidden layer of arbitrary width and nonlinear activation functions,
neural networks are universal function approximators (Hornik, 1991; Sonoda & Murata, 2017).
Arbitrarily deep architectures provide more expressive models with fewer computational units
than shallow networks (Bengio, 2009). The combined power and expressivity of universal
approximation and deep architectures has helped neural networks dominate recent advances
in the machine learning literature and, consequently, music information, audio, and signal
processing applications.

Nevertheless the literature on complex-valued networks is heavily dominated by the signal
processing community, especially concerning topics on nonlinear adaptive filters. Applications
include adaptive beamforming (Suksmono & Hirose, 2003), channel equalization (R.-C.
Huang & Chen, 2000; Solazzi, Uncini, Claudio, & Parisi, 2001), source separation (Scarpiniti,
Vigliano, Parisi, & Uncini, 2008), equalization of satellite communications (Benvenuto,
Marchesi, Piazza, & Uncini, 1991b), and coherent-lightwave networks (Hirose, 1994; Hirose
& Kiuchi, 2000). An adaptive noise reduction method for interferometric synthetic aperture
radar is presented in (Suksmono & Hirose, 2002). Improvements to electrical power systems
have been proposed with respect to load flow analysis (Ceylan, Çetinkaya, Ceylan, & Özbay,
2006) and power transformer modeling (Chistyakov, Kholodova, Minin, Zimmermann, &
Knoll, 2011; Minin, Chistyakov, Kholodova, Zimmermann, & Knoll, 2012).

In the fields of computer vision and image processing, researchers have applied complex
networks on optical flow (Miyauchi & Seki, 1992; Miyauchi, Seki, Watanabe, & Miyauchi,
1993). Multivalued neurons were used for deblurring (I. N. Aizenberg, Paliy, Zurada, &
Astola, 2008), and character recognition was performed using Clifford networks (Rahman,
Howells, & Fairhurst, 2001). Gray-scale image reconstruction was presented in (Tanaka &
Aihara, 2009). Complex networks have been used in conjunction with holographic movies
in (Hirose, Higo, & Tanizawa, 2006a, 2006b; Tay, Tanizawa, & Hirose, 2007). S. L. Goh,
Popovic, and Mandic (2004) have used complex neural networks to predict wind direction
and speed, and Minami and Hirose have constructed digital elevation maps (Minami &
Hirose, 2003).

Unitary weight matrices have been used to alleviate the vanishing gradient problem for
recurrent networks (Arjovsky, Shah, & Bengio, 2016; Wisdom, Powers, Hershey, Le Roux,
& Atlas, 2016). These papers take advantage of properties associated with orthogonal
matrices, and are able to improve space and time efficiency by utilizing complex-valued
unitary matrices. Danihelka, Wayne, Uria, Kalchbrenner, and Graves (2016) have combined
holographic memory, in which complex vectors are used to store and retrieve information from
a memory bank, with Long Short-Term Memory (Hochreiter & Schmidhuber, 1997) models.
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Recently, Trabelsi et al. (2017) discussed how to apply complex adaptations of real-valued
activation functions, batch normalization, and weight initialization to deep complex networks.

Despite rich literature on complex neural networks, there are few examples of these being
applied to audio or audio-like signals. Hirose and Yoshida (2012) demonstrated that complex
networks are better than real networks for denoising incoherent, or noise-corrupted, waveforms.
Al-Nuaimi, Amin, and Murase (2012) proposed an improvement to the MP3 codec using
complex networks. Tsuzuki, Kugler, Kuroyanagi, and Iwata (2013) have used complex
networks for audio source localization. Associative memories for musical temporal sequences
has been suggested, but these models operated on a symbolic music representation, rather than
on audio signal (Kataoka, Kinouchi, & Hagiwara, 1998; Kinouchi & Hagiwara, 1995, 1996).
Finally, Trabelsi et al. (2017) evaluate deep complex networks with a music transcription
and a speech spectrum prediction task.

Why use complex-valued models on audio, when a complex number z = a + ib is fully
identified by an ordered pair of real-valued numbers (a, b)? Our motivations are twofold.
First, as a consequence of key properties of the discrete Fourier transform, the real and
imaginary parts of audio are statistically dependent on each other. For example, the Fourier
transform is a linear map, and multiplying a time-domain signal by a scalar corresponds
to multiplying its magnitude in the frequency-domain. Scaling the magnitude of a complex
number is equivalent to multiplying its real and imaginary parts by equal values, implying
statistical dependence. As a second example of statistical dependency, we may consider
the shift theorem, i.e., a circular rotation of a time-domain signal corresponds to a linear
phase shift in the frequency domain. The real and imaginary parts of a complex number
are dependent on each other under any change in phase. We argue that using real-valued
models on frequency-domain audio breaks assumptions, based on prior knowledge, about the
dependence of the real and imaginary parts.

Second, a complex-valued model provides a more constrained system than one based on real
numbers. If we know in advance that phase and magnitude are important to the learning
objective, then it’s sensible to employ a complex-valued model. To illustrate, the following
example is borrowed from Hirose (2011). Suppose we would like to solve the linear equation
y = Wx, with inputs x ∈ R2, parameters W ∈ R2×2, and outputs y ∈ R2. There are more
parameters than inputs, so the equation is underdetermined and has either no solutions or
an infinite number of solutions. Now, if we interpret W as a univariate complex number,
then its elements must have the form

W =

[
a −b
b a

]
, (1.1)

where a and b are the real and imaginary coefficients of the complex number w = a + ib.
There are now only two degrees of freedom. Furthermore, a = |w| cos (θ) and b = |w| sin (θ),
where θ = arg (w). Therefore, by havingW represent a univariate complex parameter rather
than two bivariate real parameters, we have a solution space with less degrees of freedom
and that is easily interpreted in terms of magnitude and phase.

Research into complex networks has developed in parallel with real networks since the late
1980s, yet there has been little development of complex neural networks for deep learning.
Rather, such research, using shallow models, targets highly-specific signal-processing domains
such as channel equalization and adaptive array processing. Several factors contribute to

- 6 -



1. Introduction

the slow adoption of complex networks. First, they are difficult to train because complex-
valued activation functions cannot be simultaneously bounded and complex-differentiable;
second, there are few known methods for regularization and hyper-parameter optimization
specifically developed for complex neural networks; third, there are no public libraries for
training complex models. Indeed, there is a large gap in the recent literature between complex-
and real-valued neural networks. Chapter 3 provides an overview of these challenges and
various ways of training complex networks

1.2 Contributions

The origin of complex networks dates to the 1980s. Yet none of the existing implementations
address the challenges and rewards of employing deep complex networks specifically for audio
tasks. Modern deep learning libraries, which have undergone rapid development in the last
five years, do not fully support complex learning. The application of complex networks on
audio is therefore itself a novel contribution, one which will open paths to future research.

This manuscript provides three primary contributions.

1. We’re the first to motivate deep complex networks by their affinity with complex-valued
frequency-domain audio.

2. We provide working complex architectures, bridging a gap between theory and applica-
tion.

3. We present experimental results using novel complex neural architectures on two highly
relevant audio modeling tasks: audio source localization and speech enhancement.

The first two contributions are the content of Chapters 2 and 3, where we motivate complex
networks for audio and examine architectural design choices and optimization schemes.
In particular, we emphasize that holomorphicity is not a requirement for complex neural
optimization. That is, there’s a potentially large palette of activation functions from which
to choose if we relax smoothness requirements. Instead, networks with complex components
such as complex weights may be optimized using real-analytic activation functions. This may
be accomplished using modern deep learning libraries after making minor modifications to
optimization algorithms. In particular, we show that the naive implementation of Adam and
other optimization algorithms that track the uncentered second moment of the gradient need
to ensure that the statistic is correct for complex random variables. We also show that the
choice of input and output representation may have a significant impact on the performance
of a complex network.

The latter contribution is the content of Chapters 4 and 5, where we introduce novel
architectures for binaural audio source localization and speech enhancement. The source
localization model beats real-valued models, as well as real- and complex-valued baselines.
We emphasize that the localization model is able to generalize across different anatomical
filters, or head-related transfer functions. This is important because humans can do the
same, and machine listening algorithms should perform comparably to humans.
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Table 1.1: Phrases and their abbreviations.

Abbreviation Phrase

ANN Artificial neural network
BRIR Binaural room impulse response
CE Cross-entropy
CLMS Complex least mean square
CPU Central processing unit
DFT Discrete Fourier transform
DSE Dynamic speech enhancement
ETF Elementary transcendental function
GPU Graphics processing unit
GRU Gated recurrent unit
HATS Head and torso simulator
HRIR Head-related impulse response
HRTF Head-related transfer function
ILD Interaural level difference
IPD Interaural phase difference
ITD Interaural time difference
LMS Least mean square
LSTM Long-short term memory
MA Mask approximation
NMF Nonnegative matrix approximation
POS Part-of-speech
PSA Phase-sensitive signal approximation
ReLU Rectified linear unit
RNN Recurrent neural network
SA Signal approximation
SDR Signal to distortion ratio
SNR Signal to noise ratio
STFT Short term Fourier transform

Speech is enhanced using a two-stage model. In the first stage, we train a complex-valued
stochastic autoencoding dictionary to encode a frame of frequency-domain audio into a
set of categorical probability distributions. Frames of audio are synthesized by sampling
from the encoder and propagating the samples through a nonlinear decoder. We show
that the autoencoder can generate high-quality audio from a discrete space, which is an
important contribution because neural audio synthesis requires a strong acoustic model. We
also show that the Complex Adam algorithm converges to a better optimum than a naive
implementation of Adam for complex networks. The second stage of the model infers a
temporal sequence of discrete categorical spaces associated with frames of enhanced speech.
We find that our proposed complex speech enhancement model is not able to beat a similar
real models. However, it is the first implementation of its kind, and it paves the way for
other complex domain neural synthesis models.

- 8 -



1. Introduction

Table 1.2: Summary of math typography, notation, and symbols.

Notation Description

Z, Q, R, C Sets of integer, rational, real, and complex numbers
x, x, X Scalar, vector, matrix
xij The element in the i-th row and j-th column of X
x(a) A vector x that is identified by the label (a)
f , g, h Functions
x, y, z Variables
Re z, Im z Real and imaginary parts of z
ZT Transpose of Z
Z Complex conjugate of Z
Z∗ Conjugate transpose of Z
F Fourier transform
H Hilbert transform
fs Sampling rate
i Imaginary number
e Euler’s number

1.3 Preliminaries

Table 1.1 provides commonly abbreviated phrases found in the manuscript. We will adhere
to the following notational conventions, a summary of which is provided in Table 1.2. Most
mathematical notation is typeset in a Roman font. We use the following typesetting to
indicate the dimensionality of data structures.

Scalar array elements. Lowercase slanted symbol, e.g. x;

Row or column vectors. Lowercase bold slanted symbol, e.g. x; and

Multidimensional arrays, including matrices. Uppercase bold slanted symbol,
e.g. X.

Unless otherwise indicated, all vectors are to be treated as column vectors. In general the
uppercase letters M and N will indicate the sizes of individual array dimensions, with i
and j representing indices of rows and columns, respectively. The symbols f , g, and h will
be used for functions. The typesetting of a function will be used, when convenient and
informative, to indicate the dimensionality of its output, e.g. f , f , and F . Indices into arrays
are indicated with subscripted letters. We use zero-based counting for all indices. Array
labels are indicated using superscripted text surrounded by parentheses.

Variables will generally be introduced by the symbols (upper or lowercase) x, y, and z. We
will describe them as (possibly multidimensional) arrays of values. At the same time, we will
indicate the numerical set membership of array elements. For instance a matrix of complex
numbers could be designated as X ∈ CM×N . The transpose of a matrix X is XT.

An arbitrary complex matrix Z = U + iV : U ,V ∈ RM×N is composed of real coefficients
U and imaginary coefficients iV . The complex conjugate is indicated with an overline, e.g.,
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Z = U− iV . Its conjugate transpose is indicated with an asterisk, e.g., Z∗ = (Z)T. Real and
imaginary components may be extracted respectively using the operators Re{Z} = 1

2 (Z+Z)

and Im{Z} = 1
2i (Z −Z).

Any real number, denoted as x ∈ R, is also a complex number. That is, R = {x ∈ C : Imx =
0}. In this manuscript we’ll sometimes use real numbers interchangeably with their “complex”
versions. In other words, we may compose computational graphs that include variables that
are defined as real as well as variables that are defined as complex.

When describing a particular neural network architecture, we will also make distinctions
between the following elements, any of which may be real or complex:

• Domain or input;

• Internal processing units and weights; and

• Codomain or output.

When we refer to a model that has a complex domain, we may simply say that its inputs are
complex-valued. A model that has complex processing units has complex-valued weights. A
model with a complex codomain has complex outputs. Such a model is termed “complex-
valued.”
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CHAPTER 2

Audio

Sound is the superposition of one or more oscillations propagated in a medium such as
air (American National Standards Institute, 2013).1 A sensor such as a microphone transduces
mechanical energy to electrical current. A digital recorder stores the signal after band-limiting
and sampling it at a fixed rate, fs. The particular value of fs is linked to the spectral, or
frequency, content of the recorded audio signal. Due to the Nyquist-Shannon sampling
theorem, fs must be at least twice as large as the greatest frequency in the signal. The
maximum frequency that humans can hear is approximately 20 kHz. Musical sound has
frequency content that spans the frequency range of human hearing, which is one of the
reasons that the sampling rate of 44.1 kHz has been a recording industry standard for decades.
Speech signals, on the other hand, have most of their energy focused about a narrower
frequency range; they are often recorded using smaller sampling rates, such as 16 or 8 kHz.
Whatever the value of fs for audio, it is considerably greater than other signals such as
natural language (approximately 2.5 words per second); video (24 or 60 frames per second);
or electroencephalography (EEG, 240 samples per second).

A “raw audio” recording is represented by a long string of samples, with typically many
thousands of samples encoding a few seconds of sound. The high dimensionality of raw
audio means that we rarely work with it directly. Rather, raw audio is subjected to a
transformation motivated by, among other concepts,

• Reducing dimensionality;

• Representing the data in a domain that is easier to work with; or

1For the purposes of this manuscript only sounds that evoke an auditory sensation as opposed to, e.g.,
ultrasound, are considered.
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Figure 2.1: Waveform of an audio recording.

• Increasing the salience of signal characteristics that are correlated with an inference
task.

The following sections provide an overview of real and complex representations, as well as
motivations for using each.

2.1 Waveform

Consider an audio signal x(t) ∈ R, evaluated at discrete time steps t = 0, 1, . . . , T − 1.
Figure 2.1 depicts 5 seconds of a monophonic audio recording of pop music. We might
decide (naively) to work with the unaltered digital audio waveform directly, expressed as[
x(0) x(1) · · · x(T − 1)

]T. However there are several reasons why the raw unwindowed
waveform may not suffice.

The number of samples, T , is likely to be extraordinarily high. Even with methods designed
to handle high-dimensional data, such as convolutional nets, the scale is likely to be too
burdensome and problems may arise if we try to train an arbitrary model using the standard
backpropagation algorithm. Meanwhile, we usually don’t care to make inferences about
entire audio files based upon signal characteristics occurring at the duration of microseconds.
Therefore we may construct N = bT/Hc frames of length M from x(t) using a hop size of
H, and construct X ∈ RM×N in the following way.

x(n) :=
[
x(nH) x(nH + 1) · · · x(nH +M − 1)

]T and (2.1)

X =
[
x(0) x(1) · · · x(N−1)]. (2.2)

For instance, to accomplish full and non-redundant coverage of x we can extract adjacent
non-overlapping frames by letting H = M . The best choices of H and M are not always
immediately obvious and are generally dictated by the task at hand.

Assuming that H is small relative to M and that the value of fs is high, the difference in
sound between time-adjacent frames x(n) and x(n+1) would normally be imperceptible to a
human. Yet any non-trivial waveform is non-stationary. Shifting the location of an arbitrary
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frame x(n) would result in a new frame that is numerically dissimilar, even if the two frames
are not perceptually distinct. Audio has a correspondence problem, where it is difficult to
determine whether vectors of audio are related to each other. For many tasks, it is therefore
desirable that either the input to a model or the model itself be robust to such changes,
exhibiting “time-shift invariance.” One way of learning shift invariance is to use a model
with high learning capacity and provide an enormous amount of data during training. For
instance (Sainath, Weiss, Senior, Wilson, & Vinyals, 2015) showed that, using approximately
2000 hours of training data, a model given raw waveforms matches the performance of one
using a reduced-dimensional frequency-domain time-shift invariant representation. Otherwise
one may use a hierarchical approach, modeling dependencies at several temporal scales, as
done in SampleRNN (Mehri et al., 2016). Another method is to preprocess the data so that
it exhibits some properties of shift invariance, for instance by using the Discrete Fourier
Transform.

2.2 Discrete Fourier Transform

The human auditory system acts as a filter bank, decomposing sound stimuli into critical
frequency bands. The auditory apparatus helps us to distinguish components of spectral
content. However it’s not obvious from an unprocessed time-domain waveform which
frequencies have the most energy. There’s a mismatch between the processing performed by
the human auditory system and the waveform representation of a sound. If our learning task
corresponds to human perception, as it often does, then a corresponding signal representation,
one that is similar to the way humans hear sound, may be considered useful.

We often aim to have an intermediate representation that shows an evolution of time and
frequency, which more closely matches human cognition of sound. The usual approach is
to segment the waveform into partitions of size M , each having M � T (with T defined
above) points and scaled by a tapered window function w(m), such as the Hann function.
By computing the M -point discrete Fourier transform (DFT, F) on consecutive frames we
produce short-term (intra-frame) evolution of amplitude over frequency along with long-term
(inter-frame) evolution of frequency amplitude over time.

The DFT of the windowed frame x(n) is an invertible transformation defined as

x̂
(n)
k := (Fx(n))(k), (2.3)

=

M−1∑
m=0

w(m)x(n)m e−i2πkm/M , and (2.4)

x̂(n) =
[
x̂
(n)
0 x̂

(n)
1 . . . x̂

(n)
M−1

]T
. (2.5)

One can see that x̂(n)k is simply the cross correlation between the windowed frame and a
complex sinusoid having frequency k/M radians per unit time, telling us how well the two
signals “match.” When the input to a DFT is real-valued (as is the case with audio), then
x̂
(n)
k = x̂

(n)

M−k and we typically are only interested in the values associated with frequency
bins k = 0, 1, . . . ,K − 1, with K = M/2 + 1.
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The DFT is an invertible transform, and the samples of x(n) can be recovered from the DFT
in the following way.

x(n)m := (F−1x̂(n))(m) and (2.6)

=
1

Mw(m)

M−1∑
k=0

x̂
(n)
k ei2πkm/M . (2.7)

2.2.1 Short-Term Fourier Transform

We may construct a short-term Fourier transform (STFT) from time-adjacent frames, which
provides temporal evolution of the spectrum of a waveform. Using X as defined above, we
obtain a matrix of time and frequency coefficients,

X̂ =


x̂
(0)
0 x̂

(1)
0 · · · x̂

(N−1)
0

x̂
(0)
1 x̂

(1)
1 · · · x̂

(N−1)
1

...
...

. . .
...

x̂
(0)
K−1 x̂

(1)
K−1 · · · x̂

(N−1)
K−1

 (2.8)

∈ CK×N . (2.9)

Figure 2.2 shows the power spectrum in decibels (i.e. 20 log10

∣∣∣X̂∣∣∣) for the waveform depicted
in Fig. 2.1, as well as its phase spectrum in radians.

Visual inspection of the power spectrogram in the upper panel of Fig. 2.2 reveals several
interesting details about the recording. Rhythmic syncopation is expressed by wide-band
bursts of energy occurring at regular time intervals. Harmonic components are apparent by
the presence of energy that is regularly spaced along the frequency axis. Spectra based upon
the magnitude coefficients, which do not take into account phase, provide course temporal
detail about the signal under analysis. The lower image shows the phase spectra, which
provide fine temporal details about the DFT of each audio frame. It’s more difficult to
visually parse this image, as the phases of the complex coefficients might appear random to
the human eye.

2.2.2 Phase Spectra

In many learning and inference tasks the phases
(

arg X̂
)
of the DFT-transformed signal

are discarded and the complex-valued coefficients are treated as real-valued and zero-phase.
In discarding the phase, we obtain a representation that is invariant to small shifts in time,
which is useful for some scenarios. But in other cases the fine-scale temporal indicators might
be important.

In 1981 Alan Oppenheim published “The Importance of Phase in Signals,” in which phase-only
and magnitude-only reconstructions of images and audio are compared (Oppenheim & Lim,
1981). The conditions under which such signals may be reconstructed were examined and
Oppenheim determined that phase plays a higher role than magnitude in intelligibility. One
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Figure 2.2: STFT corresponding to a few seconds the pop music recording depicted in
Fig. 2.1. Top: power spectrogram, in decibels. Harmonics, seen as horizontal bands of
energy are apparent in the lower frequencies. Transient sounds, such as drum hits, are
represented by bursts of energy across all frequencies. Bottom: phase spectrogram, in
radians. It is difficult to visually parse patterns from the phase spectra.
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Figure 2.3: Zoomed-in power portion of spectrogram shown in Fig. 2.2. Bins having
at least 0 dB energy are overlaid with phase-based frequency estimations (in white).
With a small amount of processing, the phase spectra reveal an estimate of the true
frequency that each bin’s energy is associated with, information which is unavailable
in the magnitude spectra.

may argue that for many analysis applications, the relative phases of components may not
be informative; in some cases humans are not sensitive to such differences (von Helmholtz,
1863).

Yet when considering sinusoidal components that are near to each other in frequency, humans
have a much higher sensitivity to differences in phase (Goldstein, 1967; Mathes & Miller,
1947). It follows that relative phase may play an especially high perceptual role for signals
exhibiting wide-band spectral energy, e.g. musical audio, in which energy is distributed more
evenly across the spectrum. In addition humans are sensitive to binaural phase differences,
e.g. perceived pitches may be induced using binaural recordings of noise (Cramer & Huggins,
1958). In multichannel settings phase differences arising from different sources may yield
information about direction of arrival. Hence discarding the phase of a transformed signal
amounts to throwing away potentially important information.

For instance, the magnitude coefficients
∣∣∣X̂∣∣∣ only give us a rough idea of how much energy is

associated with each complex sinusoid in the set of Fourier basis functions. Due to spectral
leakage and the coarse frequency-domain sampling of the DFT, we cannot make accurate
predictions about the true frequencies associated with each bin by relying solely on the
magnitude coefficients. However the phase spectra provide big hints about the frequency
content. For each frequency bin k in X̂ we can estimate the true frequency bin k̂ by analyzing
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Figure 2.4: Log power spectrograms of a simulated binaural recording, left and right
channels.

the differences of the bin phase with respect to time frame (Gunawan & Sen, 2005),

∆k = min
δ∈{0,±M

H }

{∣∣∣∣MH
(
∂(argX)

∂n

1

2π

⌊
Hk

M

⌋)
− k + δ

∣∣∣∣} , given (2.10)

k̂ = k + ∆k. (2.11)

Figure 2.3 provides a zoomed-in view of the power spectrogram shown in Fig. 2.2. The
estimated frequencies of the spectrogram, computed using Eq. (2.11), are overlaid in white.
(Values associated with low-energy bins have been masked for intelligibility.) Harmonic
content and minute fluctuations in pitch are clearly visible.

The example shows that important monophonic cues are present in the phase derivative
of the STFT of a monophonic recording. Informative phase-related cues are also present
in stereophonic recordings. The human head, torso, and outer ears impose spectral filters
on sound before it reaches our ears. We rely on these filters for localizing acoustic events.
At frequencies above approximately 1.5 kHz, the size and density of the head impose a
“shadowing” effect, causing frequency-dependent interaural level differences between the
left and right ears. At frequencies below 1.5 kHz, sinusoidal wavelengths are greater than
the diameter of the head, allowing them to pass through the head with minimal change
in intensity. But there remain frequency-based phase differences between the ears due to
differences in time of arrival of individual spectra.

Figure 2.4 shows the log power spectrograms for the left and right channels of a simulated
binaural recording. The source audio is an excerpt of a polyphonic chamber music perfor-
mance. The audio has been convolved with the head-related impulse response of a human
subject. The impulse response encodes the subject’s head filter corresponding to sounds
arriving at an azimuthal angle of 15° and elevation of 0°. In other words, the recording has
been manipulated to simulate the signal as if it were recorded in the subject’s ears, and if
the performance were being displayed at eye level and just to the right of the subject’s head.

The details of the left and right log power spectrograms are very similar, with the right
channel exhibiting a slightly reduced level of overall energy. Figure 2.5 shows the difference
between the left and right log spectrograms in the top axes. The relative energy of the left
channel is slightly higher, especially in some frequency bands above 1 kHz. However, not
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much detail can be discerned. The inter-channel phase differences are plotted as arrows
in the bottom axes, where it is more obvious that the two channels have nearly constant
per-channel phase differences and group delay.

2.3 Other Representations

The analytic signal is one which has no negative frequency components. It allows us to
observe the instantaneous phase and amplitude at any sample by computing its argument
and modulus (Picinbono, 1997). It also yields, via first order derivative, the instantaneous
frequency of the signal. The analytic signal of x(t) is expressed with

s(t) = x(t) + iHx(t), (2.12)

where H represents the Hilbert transform,

Hx(t) = − 1

π
lim
ε→0

∫ ∞
ε

x(t+ τ)− x(t− τ)

τ
dτ . (2.13)

When x is a real discrete-time signal, the discrete-time analytic signal of a frame x(n) (as
defined above) is composed by using an approximation of the Hilbert transform, the DFT,
and its inverse.

ŝ
(n)
k =


2
((
Fx(n)

)
(k)
)

if 1 ≤ k ≤M/2− 1(
Fx(n)

)
(k) if k ∈ {0,M/2}

0 otherwise
, (2.14)

ŝ(n) =
[
ŝ
(n)
0 ŝ

(n)
1 · · · ŝ

(n)
M−1

]T
, and (2.15)

s(n) =
(
F−1ŝ(n)

)
. (2.16)

Other complex transformations for audio include the complex wavelet (Kingsbury, 2001)
and empirical mode decomposition (N. E. Huang et al., 1998). This manuscript focuses on
waveforms and their frequency-domain transforms.
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Figure 2.5: Top: difference of left and right log power spectrograms of a simulated
binaural recording. Bottom: difference of phase spectrograms.

- 19 -



2. Audio

- 20 -



CHAPTER 3

Complex Neural Networks

Complex networks have been largely ignored by all except a few niche research communities,
in spite of an accelerating flurry of research on deep real networks. Nevertheless the early
history of complex networks, which is summarized in the following section, dates to the late
1980s. The following sections present activation functions and objective functions. We next
review ways to optimize complex networks, along with how the Wirtinger Calculus may
ease the implementation of certain types of networks. We also contribute a modification
to the Adam algorithm (Kingma & Ba, 2014) for computing second-order statistics of the
complex gradient. Finally, the relative merits of various input and output representations
are discussed in the context of a toy waveform synthesis task.

3.1 History

One of the earliest examples of a trainable neural network was Rosenblatt’s perceptron
(Rosenblatt, 1958). It subsequently influenced the ADALINE machine (Widrow & Hoff,
1960) for optimizing the coefficients of a linear adaptive filter. ADALINE was a single-layer
single-neuron machine and it utilized least mean square (LMS) along with a stochastic
gradient descent algorithm for learning an optimal configuration of weights. We describe it
here. Denote inputs and weights as x ∈ RN and w ∈ RN . The model infers

ŷ = x ·w. (3.1)
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3. Complex Neural Networks

Given a target output y ∈ R. We denote error e and objective function L. We wish to find
the value of w that minimizes L.

e = y − ŷ, (3.2)

L = e2, and (3.3)
w ← arg min

w
(L). (3.4)

The LMS algorithm optimizes L using gradient descent.

∇Lw := −2ex and (3.5)
w ← w + αex, (3.6)

where α is a learning rate that absorbs the scaling factor of 2.

Widrow, McCool, and Ball (1975) extended the LMS algorithm to the complex domain by
providing a steepest descent derivation with respect to real and imaginary parts. Brandwood
(1983) generalized the theory using descent with respect to complex variables, rather than
their real components. His derivation, although uncited as such, depends on the Wirtinger
Calculus (Wirtinger, 1927)1, a complex-valued expression of the gradient that maintains
an equivalence with the gradients of the real and imaginary components. The Wirtinger
Calculus, which is discussed in more detail in Section 3.4, gives an equivalent but simplified
method for deriving the gradient with respect to complex-valued functions. Denoting inputs,
target, and weights in the complex domain, x,w ∈ CN and y ∈ C, the objective function,
gradient, and update become

L = ee, (3.7)
∇Lw = −2ex, and (3.8)

w ← w + αex. (3.9)

Despite Brandwood’s early efforts, until recently much of the literature eschewed the Wirtinger
Calculus in favor of more cumbersome derivations with respect to real and imaginary parts.

Noest (1987, 1988a, 1988b) is credited with introducing phasor networks in 1987, the first
nonlinear neural networks defined over the field of complex numbers. Continuous and
discrete phasors were presented in (Noest, 1988a) and (Noest, 1988b) in the context of
associative retrieval. Kuroe, Hashimoto, and Mori (2001a, 2001b) analyzed the associative
abilities of multivalued and continuous networks on synthetic data, as did Nemoto and
Kubono (1996). Donq-Liang and Wen-June (1998) studied complex bidirectional associative
memories, while Müezzinoǧlu, Güzeliş, and Zurada (2003) investigated Hopfield-type complex
networks. Jankowski, Lozowski, and Zurada (1996) used associative complex networks to
recall gray-scale images. Kuroe and Taniguchi (2007) gave an analysis of performance of
several types of complex associative memories.

One can trace the history of nonlinear complex-valued activation functions further back to
Soviet Russia where, in the early 1970s, Naum Aizenberg and colleagues developed a theory
of multithreshold logic defined for the field of complex numbers (N. N. Aizenberg & Ivas’kiv,

1Since the “Wirtinger” Calculus can be traced back to several authors, it is more generally described as
the “CR-Calculus” (or “Complex-Real Calculus”) by Kreutz-Delgado (2009).
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1977; N. N. Aizenberg, Ivas’kiv, & Pospelov, 1971; N. N. Aizenberg, Ivas’kiv, Pospelov, &
Khudyakov, 1971, 1973). Due to restrictions placed by the USSR on global dissemination
of scholarly work, complex domain multithreshold logic did not reach a wide audience and
thus Noest’s work was developed independently from Aizenberg’s. From the early 1990s
complex-parameterized networks and their variations were increasingly studied.

By showing that, with backpropagation, neural networks learn useful hidden features, Rumel-
hart, Hinton, and Williams (1986) paved the way for investigating other architectures. In
the early 1990s several researchers independently proposed variations of the backpropagation
algorithm for complex networks. Little, Gustafson, and Senn (1990) proposed a network
that combined real parameters with real activations. M. S. Kim and Guest (1990) gave a
derivation for complex nets having a single hidden layer. They showed that, just as in real
nets, the XOR problem (Minsky & Papert, 1969) may be solved with a complex network
having one hidden layer and sigmoidal activation functions.2

Leung and Haykin (1991) gave a derivation of the complex backpropagation algorithm
using sigmoid functions. Benvenuto, Marchesi, Piazza, and Uncini (1991a), Benvenuto and
Piazza (1992) gave their derivations for the real-imaginary split activation approach and
apply their network to channel equalization of nonlinearly distorted satellite communications
(Benvenuto et al., 1991b). Georgiou and Koutsougeras (1992) derive backpropagation using a
novel non-holomorphic activation function. Nitta and Furuya (1991, in Japanese) and Nitta
(1993a, 1993b, in English) also use the split real-imaginary approach and perform geometric
transformations in the complex domain, which the authors claim cannot be satisfactorily
reproduced in the real domain.

Donald Birx wrote a PhD thesis on the design of complex networks for eddy current
characterization (Birx, 1990). John Sutherland introduced holographic neural networks
(Sutherland, 1990). Clarke (1990) explored the relationship between real and complex
systems. As an example of the utility of complex nets, Clarke suggests that a complex neural
network should be able to readily determine whether an element is in a Mandelbrot set.
The real time recurrent learning algorithm (Williams & Zipser, 1989) was broadened to the
complex domain by Kechriotis and Manolakos (1994) using a split complex approach, where
the real and imaginary parts are treated as independent.

Van den Bos (1994) extended Brandwood (1983)’s complex gradient with the complex Hessian,
paving the way for second-order methods of optimization. Mandic and Goh (2009) have
advocated “augmented,” or widely linear, methods in order to accurately model second-order
complex statistics, for instance in S. L. Goh and Mandic (2007), without which it’s more
difficult to capture complex impropriety (Schreier & Scharf, 2010). There is limited guidance
on regularization of complex neural networks, but Hirose and Onishi (1999) advocate using
noise.

More recently Zhang and Mandic (2016) suggest a complex learning rate. Trabelsi et al.
(2017) are perhaps the first authors to advocate training deep partially complex networks.
They provide complex extensions to batch normalization and weight initialization techniques
that have been used in real networks.

2Igor Aizenberg demonstrates that, unlike its real counterpart, the XOR problem can be solved by a
single complex neuron (I. N. Aizenberg, 2011).
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3.2 Activation Functions

The basic building blocks of neural networks are affine transformations, followed by nonlinear
“activation” functions which help lend a higher degree of expressivity to the model. Suppose
we have input x ∈ CM and weights W ∈ CN×M , with M and N denoting the number of
input and output dimensions, respectively. Then the output y ∈ CN of an arbitrary layer is
determined by

z = Wx and (3.10)
y = f(z), (3.11)

where f is often a nonlinear element-wise activation function.

Neural networks are known as universal function approximators, i.e., given enough hidden
units, they can approximate any real continuous function to an arbitrary degree of precision.
The first proofs of real neural networks as universal approximators were provided using
“squashing” activation functions, typically sigmoids, which are bounded and monotonic
(Barron, 1994; Cybenko, 1989; Funahashi, 1989; Hornik, Stinchcombe, & White, 1989).
Entire functions are complex functions that are holomorphic everywhere. Liouville’s theorem
states that every bounded entire function must be a constant, which implies that we cannot
have a complex network that is entire and that also utilizes the squashing activation functions.

Since the first complex neural networks were developed, authors have grappled with how
to choose or design complex activation functions. If a complex-differentiable activation is
desired, then one must forgo boundedness. Otherwise one may choose a real-differentiable
activation. Clarke (1990) and other authors have proposed using holomorphic functions,
along with strategies for avoiding singularities in the complex plane. Models using these
activation functions are described here as “fully complex”. There is no consensus on best
activation functions for real or complex networks. In general, we seek a function that is
nonlinear and that doesn’t lead to vanishing or exploding gradients during training.

Figure 3.1 shows surface plots of the real and imaginary parts of the hyperbolic tangent
function. The hyperbolic tangent function, which is fully complex, is a commonly used
nonlinearity in real networks and has been promoted for complex networks in several
manuscripts, e.g., (Mandic & Goh, 2009). It can be seen that values lying along the
imaginary axis of the input cause regularly spaced singularities in the output. In order to
use such an activation function, one must ensure that the input is scaled appropriately to
avoid explosively large values.

Others have suggested that it is an unnecessarily strict constraint to require holomorphic
activation functions. They suggest that it is sufficient to use activation functions that are
differentiable with respect to their real and imaginary parts. The proposed methods include
split real-imaginary and split amplitude-phase, referred respectively as “Type A” and “Type
B” by Kuroe, Yoshid, and Mori (2003). Benvenuto and Piazza (1992), among many others,
used a split real-imaginary approach with sigmoid functions on the real and imaginary parts
of the signal. Figure 3.2 shows the surface plot of a split real-imaginary hyperbolic tangent
function.

Georgiou and Koutsougeras (1992) proposed a split amplitude-phase nonlinear activation
function (Fig. 3.3) that is phase-preserving and magnitude squashing. They make several
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Figure 3.1: Surface plots for the real and imaginary parts of the hyperbolic tangent
function.
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Figure 3.2: Surface plots for the real and imaginary parts of the split real-imaginary
hyperbolic tangent function.

arguments against a fully complex approach, insisting that activation functions should be
nonlinear, bounded, and have partial derivatives with respect to the real and imaginary parts.
Hirose (1992a) proposed an alternate phase-preserving and magnitude squashing function.

The activation function of Georgiou and Koutsougeras is nonlinear with respect to magnitude
and linear with respect to phase; there is also a sizable class of functions that are linear with
respect to magnitude and nonlinear with respect to phase. These functions, introduced as
phasor networks (Noest, 1988a), usually produce values on the origin and the unit circle
(Hirose, 1992b; Jankowski et al., 1996; Miyajima, Baisho, Yamanaka, Nakamura, & Masahiro,
2000; Nemoto & Saito, 2002; Zemel, Williams, & Mozer, 1995). Takeda and Kishigami (1992,
1993) suggested similar networks motivated by the physical modeling of optical systems.
Multivalued neurons, formulated from the multivalued threshold logic by Aizenberg and
Aizenberg, also follow a similar paradigm (N. N. Aizenberg & Aizenberg, 1992).

Most early papers advocated split approaches using non-holomorphic functions. Yet fully
complex activation functions lend themselves to complex gradient-preserving backpropagation.
Kim and Adalı suggest that some elementary transcendental functions (ETFs) with isolated
singularities are preferred for training neural networks if the domain of interest does not
include the singularity (T. Kim & Adalı, 2001, 2002, 2003). Suggested ETFs and their
derivatives are shown in Table 3.1.
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Figure 3.3: Surface plots for the real and imaginary parts of the split phase-preserving
function proposed by (Georgiou & Koutsougeras, 1992).

Table 3.1: Elementary transcendental functions and their derivatives.

f(z) df
dz

Circular
tan z = eiz−e−iz

i(eiz+e−iz)
d
dz tan z = sec2(z)

sin z = eiz−e−iz

2i
d
dz sin z = cos z

Inverse circular
arctan z = 1

2 i[ln(1− iz)− ln(1 + iz)] d
dz arctan z = 1

1+z2 : z 6= ±i

arcsin z = −i ln
(
iz +

√
1− z2

)
d
dz arcsin z = 1√

1−z2 : z 6= ±1

arccos z = 1
2π + i ln

(
iz +

√
1− z2

)
d
dz arccos z = − 1√

1−z2 : z 6= ±1

Hyperbolic
arctanh z = 1

2 [ln(1 + z)− ln(1− z)] d
dz arctanh z = 1

1−z2 : z 6= ±1

arcsinh z = ln
(
z +
√

1 + z2
)

d
dz arcsinh z = 1√

1+z2
: z 6= ±1

Inverse hyperbolic
arctanh z = 1

2 [ln(1 + z)− ln(1− z)] d
dz arctanh z = 1

1−z2 : z 6= ±1

arcsinh z = ln
(
z +
√

1 + z2
)

d
dz arcsinh z = 1√

1+z2
: z 6= ±1
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Table 3.2: Common and recently proposed activation functions for
complex networks. Elementary transcendental functions (ETFs) are
holomorphic and all others are not. ReLU refers to the rectified linear
unit.

activation f(z) =

ETFs (T. Kim & Adalı, 2003) see Table 3.1
Georgiou and Koutsougeras (1992)a z

c+ 1
r |z|

Hirose (1992a)b tanh
(
|z|
m

)
ei arg z

Type A (Kuroe et al., 2003)c f (r)(Re z) + if (i)(Im z)
Type B (Kuroe et al., 2003)d ψ(|z|)eiϕ(arg z)
modReLU (Arjovsky et al., 2016)e ReLU(|z|+ b)ei arg z

zReLU (Guberman, 2016)

{
z if arg z ∈ [0, π/2 ]

0 otherwise
CReLU (Trabelsi et al., 2017) ReLU(Re z) + i ReLU(Im z)
a c and r are constants.
b m is a constant.
c f (r) and f (i) are nonlinear real functions.
d ψ and ϕ are nonlinear non-negative real functions.
e b is a trainable bias parameter.

Radial basis functions are found in complex networks (Cha & Kassam, 1995; S. Chen,
McLaughlin, & Mulgrew, 1994a, 1994b; Jianping, Sundararajan, & Saratchandran, 2002).
Uncini, Vecci, Campolucci, and Piazza (1999) proposed spline-based activation functions,
which was explored further by other authors (Vitagliano, Parisi, & Uncini, 2003). More
recently Scardapane, Vaerenbergh, Hussain, and Uncini (2018) have proposed nonparametric
kernel activation functions, on the real and imaginary components, or directly in the complex
domain.

Clifford Networks generalize the K-algebras, such as real, complex, and quaternion (Buchholz,
2005; Pearson, 1995). Hyperbolic networks, in which the imaginary unit i is redefined as
i2 = +1 are investigated in (Buchholz & Sommer, 2000; Nitta & Buchholz, 2008). There
is an extensive literature on networks implementing hyperspheres, quaternions, qubits,
multidimensional neurons, and others. The scope of this work is limited to networks
implementing complex neurons. There is no consensus in the literature concerning which
activation functions are suited for which applications.

The rectified linear unit (ReLU) (Hahnloser, Sarpeshkar, Mahowald, Douglas, & Seung, 2000)
has become very popular for deep real networks,

ReLU(x) := max(x, 0), (3.12)

as it avoids vanishing gradients associated with sigmoidal activations. At the same time,
recent literature on complex networks has sought to utilize the ReLU. Arjovsky et al. (2016)
proposed adding a trainable bias parameter to the modulus of a complex number, after
which the ReLU is applied. In the recent paper by Trabelsi et al. (2017), the ReLU is
applied independently on the real and imaginary components of a complex number. The

- 27 -



3. Complex Neural Networks

first approach has the effect of preserving phase while nonlinearly transforming magnitude.
The latter approach provides a nonlinear mapping of phase when the input argument
lies anywhere other than the upper right quadrant of the Argand plane. Neither type of
activation is holomorphic. Table 3.2 provides an overview of these and other activation
functions mentioned in this chapter.

3.3 Loss Functions

Much of the existing literature on complex networks focuses on adaptive filtering tasks,
where the mean squared error is the preferred cost function. Given a target y and model
output ŷ, both in CN , and error

e := y − ŷ, (3.13)

the complex mean squared loss function is defined as:

L(e) =

N−1∑
i=0

|ei|2 (3.14)

=

N−1∑
i=0

eiei. (3.15)

Equation (3.15) is a non-negative scalar real-valued function that tends to zero as the magni-
tude of the complex error tends to zero. Alternatively Savitha, Suresh, and Sundararajan
(2013) have proposed replacing Eq. (3.13) with the error between the log targets and log
outputs,

e := log ŷ − log y. (3.16)

The loss function now reduces to

L(e) = (log |ŷi| − log |yi|)2 + (arg ŷi − arg yi)
2
. (3.17)

Equation (3.17) has the nice property that the magnitude and phase errors are represented
explicitly in the objective function.

Equations (3.13) and (3.16) may be appropriate error functions for a complex-valued regression
model. What objective function should we use for a classification model that maps complex
numbers to real numbers? There is no agreed-upon method, but one option is to project
the outputs of the last layer to the real domain through a (necessarily non-holomorphic)
transform and use any of the preexisting loss functions for real nets, such as cross entropy.
We study this approach in Chapter 4.
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3.4 Optimization

3.4.1 The Complex Gradient and Wirtinger Calculus

Brandwood and Van den Bos formulated early derivations of the complex gradient, Jacobian,
and Hessian using the Wirtinger Calculus (Brandwood, 1983; van den Bos, 1994). Wirtinger
(Wirtinger, 1927) provided an equivalent formalism that makes computing the derivative of
complex-valued functions with respect to holomorphic and real-analytic non-holomorphic
functions less burdensome.3 The Wirtinger Calculus helps simplify cumbersome statements
about the derivatives of complex functions by letting us describe them entirely within the
complex field, rather than with respect to the real and imaginary components. Despite its
apparent convenience, until recently few authors have opted to illustrate backpropagation
of complex neural networks using the Wirtinger Calculus. The published non-Wirtinger
derivations can be unwieldy to read. The Wirtinger Calculus appears to be gaining favor,
with newer publications promoting its use, e.g. (Amin, Amin, Al-Nuaimi, & Murase, 2011),
Minin’s doctoral dissertation (Minin, 2012), and the newest edition of Haykin’s Adaptive
Filter Theory (Haykin, 2014). The following paragraphs summarize Wirtinger calculus and
the associated computational graph, largely following Kreutz-Delgado (2009)’s exposition.

Denote z ∈ C and x, y ∈ R with z = x+ iy. We define several related functions of z, x, and
y,

f(z) := f(z, z) (3.18)
= g(x, y) (3.19)
= u(x, y) + iv(x, y). (3.20)

The second definition of f in Eq. (3.18) suggests that we will treat the variable z and its
conjugate z as independent variables, even though they are clearly not independent of one
another. Using this definition, the R-derivative and R-derivative of f are defined as

∂f

∂z

∣∣∣∣
z is constant

and (3.21)

∂f

∂z

∣∣∣∣
z is constant

(3.22)

Note that the R-derivative and R-derivative are formalisms, as z cannot be independent of z.
However one is treated as constant when computing the derivative of other, applying the
normal rules of calculus. Using these definitions, (Brandwood, 1983) shows that

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
and (3.23)

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
. (3.24)

3Real analytic functions have partial derivatives with respect to their real and imaginary parts but are
not necessarily complex-analytic.
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Observe that the R-derivative is equal to zero for any holomorphic function. Recall the
Cauchy-Riemann equations which state that for the complex derivative of f(z) = g(x, y) =
u(x, y) + iv(x, y) to exist, the following identities must hold,

∂u

∂x
=
∂v

∂y
and (3.25)

∂v

∂x
= −∂u

∂y
. (3.26)

If we expand Eq. (3.24) and substitute the Cauchy-Riemann equations, then the R-derivative
vanishes. Thus an equivalent (and intuitive) statement about a holomorphic function is
that it does not depend on the conjugate of its input. It is further shown by Brandwood
that if f : C → R is a real-valued scalar function, either ∂f

∂z = 0 or ∂f
∂z = 0 is a necessary

and sufficient condition for f to have a stationary point. By extension if f : CN → R is a
real-valued function of a complex vector z = [z0 z1 · · · zN−1]T and we define the cogradient
and conjugate cogradient as

∂

∂z
:=
[
∂
∂z0

∂
∂z1

· · · ∂
∂zN−1

]
and

∂

∂z
:=
[
∂
∂z0

∂
∂z1

· · · ∂
∂zN−1

]
,

(3.27)

then ∂
∂z f = 0 or ∂

∂z f = 0 are necessary and sufficient to determine a stationary point.

If f is a function of a complex vector z, its total differential is

df =
∂f

∂z
dz +

∂f

∂z
dz . (3.28)

If f is real, as it is whenever it is a neural objective function that we wish to optimize, then
we have

df = 2 Re

{
∂f

∂z
dz

}
. (3.29)

Defining the gradient operator as

∇z(·) :=

(
∂(·)
∂z

)T

and (3.30)

=

(
∂(·)
∂z

)∗
, (3.31)

it can be shown using the Cauchy-Schwarz inequality that f has the greatest rate of change
when it is in the direction of the gradient, Eq. (3.31). Kreutz-Delgado clarifies that the
preceding only holds under the assumption of a Euclidean space4. With these definitions we
can perform gradient descent using a real-valued cost function of complex arguments, even if
some inner elements of the function are not holomorphic.

4The derivation in (Kreutz-Delgado, 2009) provides a more general framework, without posing assumptions
about metric space.
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Equation (3.28) should provide a hint that for a generic complex network, we need to keep
track of two partial derivatives for each function in the computational graph. Doing so
can be quite burdensome, especially for a composition of many functions. E.g., consider
the composition of two vector-valued complex functions f(g(z, z)). Its differential can be
characterized as,

df =

(
∂f

∂g

∂g

∂z
+
∂f

∂g

∂g

∂z

)
dz +

(
∂f

∂g

∂g

∂z
+
∂f

∂g

∂g

∂z

)
dz . (3.32)

However there are several ways that we can simplify things. Lets consider what happens if f
is a real-valued scalar objective function. Then, according to Eq. (3.31), and as Drude, Raj,
and Haeb-Umbach (2016) point out, we only care about the left term on the right hand side
of Eq. (3.32), which becomes

df ∝
(
∂f

∂g

∂g

∂z
+
∂f

∂g

∂g

∂z

)
dz . (3.33)

Now suppose rather that f is a holomorphic function. Considering that a holomorphic
function cannot depend on the conjugate of its input, Eq. (3.32) simplifies to

df =

(
∂f

∂g

∂g

∂z

)
dz . (3.34)

For a more concrete example, consider a complex-valued function,

g(z, z) =
[
g0(z, z) g1(z, z) · · · gM−1(z, z)

]T
, given (3.35)

z =
[
z0 z1 · · · zN−1

]T and (3.36)

z =
[
z0 z1 · · · zN−1

]T
, (3.37)

where we define the Jacobian and conjugate Jacobian matrices

Jg :=
∂g(z, z)

∂z
(3.38)

=


∂g0(z,z)
∂z

∂g1(z,z)
∂z
...

∂gM−1(z,z)
∂z

 and (3.39)

J (c)
g :=

∂g(z, z)

∂z
(3.40)

=


∂g0(z,z)
∂z

∂g1(z,z)
∂z
...

∂gM−1(z,z)
∂z

. (3.41)
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f g h z

g h z
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Jf◦g = Jf
∂g
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(
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)
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+ J
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f
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∂h

)

Jf◦g◦h = Jf◦g
∂h
∂z

J
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(
∂h
∂z

)

∇zf = (Jf◦g◦h)
∗

Figure 3.4: Computational dependency graph for a composition of holomorphic and non-
holomorphic functions. Tan circular nodes: non-holomorphic functions. Blue circular
nodes: holomorphic functions. Rectangular nodes: inputs. The non-holomorphic
functions are dependent on their inputs and the conjugate of their inputs. The
holomorphic functions are necessarily not dependent on the conjugate of their inputs.

In general, given arbitrary functions f and g, we compose their Jacobians in the following
way,

Jf◦g = JfJg + J
(c)
f

(
J (c)

g

)
and (3.42)

J
(c)
f◦g = JfJ

(c)
g + J

(c)
f (Jg), (3.43)

as illustrated by Amin et al. (2011), H. Li and Adalı (2008).

Now suppose we have a composition of functions (f ◦ g ◦h)(z, z), with f being a real valued
(i.e. non-holomorphic) cost function, g being a non-holomorphic complex-valued function,
and h being a holomorphic function. We would like to compute the gradient of f with
respect to z. Figure 3.4 shows the dependency graph for backpropagating the gradient.

Keeping in mind that f is a real-valued function of complex variables and that h is holomor-
phic such that ∂h

∂z = 0, we apply the chain rule to the gradient and Jacobian matrices,

Jf =
∂f

∂g
(3.44)

J
(c)
f =

∂f

∂g
(3.45)

Jf◦g = Jf
∂g

∂h
+ J

(c)
f

(
∂g

∂h

)
(3.46)

Jf◦g◦h = Jf◦g
∂h

∂z
(3.47)

∇zf = (Jf◦g◦h)
∗
. (3.48)

As depicted in Fig. 3.4, our objective function is real, which lets us get away with tracking
a single gradient for each node in the graph. We’ve also taken advantage of the fact that

- 32 -



3. Complex Neural Networks

h is holomorphic, so its output cannot depend on the conjugate of its input and J (c)
h = 0,

allowing the simplification in Eq. (3.47).

The Wirtinger Calculus makes it a little easier to build a computational graph for complex
networks having mixed compositions of holomorphic and non-holomorphic operations. The
computation of gradients with respect to complex-valued inputs prevents the tedious exercise
of moving computation between complex domains.

3.4.2 Deep Real-Analytic Optimization

We’d like to easily define deep neural networks that are internally composed of holomorphic
functions (such as matrix multiplication) and non-holomorphic functions (such as absolute
value). The preceding section makes clear that it’s possible to optimize such a network
by tracking only one gradient. The question is whether any of the existing deep learning
libraries support such optimization. At this writing, there are no existing deep learning
frameworks that fully support deep learning in the complex field. TensorFlow5, however,
gets us much of the way there.

For every forward operation defined by TensorFlow, there’s an accompanying gradient
operation. At the time of optimization, the gradient of a real-valued objective function is
backpropagated through the network, obeying the chain rule at each operation (or node) in
the computational graph. Using a real-valued objective function enables us (and TensorFlow)
to compose a relatively simple backpropagation path that satisfies many use cases. Assuming
that the loss function is L, its gradient with respect to an arbitrary function f(z) is (without
loss of generality for vector-valued functions of vectors f(z)),

∇zL = (∇fL)

(
∂f

∂z

)
+ (∇fL)

(
∂f

∂z

)
(3.49)

= (∇fL)

(
∂f

∂z

)
+ (∇fL)

∂f

∂z
. (3.50)

We’d like the following scenarios to be covered:

• Gradient with respect to a holomorphic function;

• Gradient with respect to an antiholomorphic function; and

• Gradient with respect to a real-valued, non-holomorphic, but real-analytic function.

The first case includes essential building blocks of neural networks such as matrix multi-
plication, convolution, and sigmoid functions. A function of z ∈ C defined on an open set
is antiholomorphic if its derivative with respect to z exists in the neighborhood of every
point in the set. The conjugate operator is an antiholomorphic function. Finally, the third
class of functions includes the real, imaginary, absolute and argument functions, all of which
are useful in defining activation functions. The gradient of L with respect to each of these
function types is considered below.

5TensorFlow is available online at https://www.tensorflow.org/.
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Table 3.3: Gradient of a real-valued loss function L with respect to
the argument of several non-holomorphic real-analytic functions.

f(z) ∇zL
Re(z) = 1

2 (z + z) Re {∇fL}
Im(z) = −i

2 (z − z) i Re {∇fL}
|z| =

√
zz z

|z| Re {∇fL}
arg z = −i

2 (log z − log z) i
z Re {∇fL}

When f is holomorphic the second term of Eq. (3.50) vanishes and we’re left with

∇zL = (∇fL)

(
∂f

∂z

)
. (3.51)

Similarly, when f is antiholomorphic the first term of Eq. (3.50) vanishes and we have

∇zL = (∇fL)
∂f

∂z
. (3.52)

Finally when f is a real-valued, real-analytic function, then
(
∂f
∂z

)
≡ ∂f

∂z and Eq. (3.50)
reduces to

∇zL =
(
∇fL+ (∇fL)

)∂f
∂z

(3.53)

= 2 Re {∇fL}
∂f

∂z
. (3.54)

Table 3.3 lists the gradients for several of these types of functions.

Luckily, TensorFlow handles the gradients for these functions correctly. Defining a complex
network is as simple as declaring the appropriate data types. Yet we don’t get full support
from the library. In particular, at the time of this writing, none of TensorFlow’s optimization
algorithms (such as stochastic gradient descent) permit complex optimization. In order to
accomplish optimization, we inherit a built-in optimization algorithm and add complex data
types to the list of allowable data types. This change is necessary for stochastic gradient
descent, and if we’d like to use a more advanced algorithm that relies on second-order
moments, such as Adam (Kingma & Ba, 2014), we need to do a little more work.

The Adam optimizer provides adaptive learning rates for every parameter in the model. The
algorithm maintains a moving average of the first and second uncentered moments of each
parameter’s gradient, using these to normalize the gradient and provide an effective adaptive
learning rate. We follow Kingma and Ba (2014) in the following description. Let v be the
biased second raw moment estimate of the gradient for an arbitrary parameter. Define g as
the gradient and β2 as a hyperparameter controlling the exponential decay of the moving
average. Then Kingma and Ba (2014)’s paper provides the update rule

v ← β2v + (1− β2)g2. (3.55)
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The problem with using this algorithm directly is that the square of the complex gradient
g2 is the pseudo-variance, a complex value that describes whether a random variable is
proper, i.e., whether it is uncorrelated with its complex conjugate. In the typical real-valued
scenario, g2 provides the estimated uncentered variance of the gradient and helps to bound
the learning rate of its parameter by scaling the gradient inversely proportionally to its norm.
Therefore, for a complex network, we apply the following modification to Eq. (3.55),

v ← β2v + (1− β2)gg. (3.56)

We call this algorithm Complex Adam and it is used as a drop-in replacement for a complex
network anywhere the Adam algorithm would be used for a similar real network. We show
in Chapter 5 that Complex Adam performs better on a complex dictionary learning task
than the naive implementation of Adam. Note that a similar modification may be applied to
any other optimization algorithm that keeps an estimate of a second moment, e.g. Adagrad
(Duchi, Hazan, & Singer, 2011); Adadelta (Zeiler, 2012); and RMSProp (Tieleman & Hinton,
2012).

3.5 Input, Internal, and Output Representations

The inputs to a network may be naturally complex, in which case the domain of the data is the
set of complex numbers. For example, Fourier-transformed audio is complex-valued. In other
cases, inputs are complex by design because they have phase and magnitude components
that are not statistically independent. Wind data, as in (S. L. Goh et al., 2006; S. L. Goh
et al., 2004), or acoustic direction of arrival, which is explored in Chapter 4, may be complex
by design.

We’re also faced with deciding how to represent the training targets for a network. If we
seek to infer a probability distribution over complex variables, outputs characterizing the
probabilities will be real-valued. However regression tasks may best be handled using complex
output units. The network weights may be complex or real, independent of the chosen
input/output representations. The determining factors for which of these to use may have
more than anything to do with how constrained we want our system to be.

Finally, there are different activations appropriate to complex and real hidden units. It’s
not clear in which cases we’d want to use holomorphic functions, such as those from the
elementary transcendental family of functions, versus nonholomorphic functions that more
closely represent the nonlinearities favored in today’s deep real-valued architectures.

This section characterizes the tradeoffs of some of these choices by framing them in a toy
inference task. We denote a function f : XM → YN , where X ,Y ∈ {R,C}. The variables x,
y, and ŷ = f(x) denote inputs, targets, and inferred outputs. Potential architectures are
described below, along with their impact on a toy model that learns a function that sums
sinusoids.
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Figure 3.5: Top: three real sinusoids corresponding to arbitrary vectors α and ϕ.
Bottom: corresponding real-valued output f(α,ϕ) and the Hilbert transform of f .
Black markers indicate sample points corresponding to t.

3.5.1 Sum of Sinusoids Task

For our toy example, we define the following function of the arguments α,ϕ ∈ R3.

f(α,ϕ) =
∑

i∈{0,1,2}

αi sin(ωit+ ϕi), given (3.57)

ω =
[
6π 10π 14π

]T and (3.58)

t =
[
0 1

100 · · · 99
100

]
, (3.59)

where the sine function is applied element-wise. The top axis of Fig. 3.5 plots three sinusoids
associated with arbitrary vectors α and ϕ. The bottom axis plots their summation, y, in
green. The orange line plots the Hilbert transform of f , which we discuss below.

We’d like to train a model that learns f , and in the following sections we will explore various
real and complex model configurations. The task is motivated by the fact that we often
decompose audio into its sinusoidal components and that both the real and complex fields
are equipped to handle periodicity (i.e., by trigonometric functions or complex argument).
The following subsections describe design decisions for solving the task. Importantly, we
show that particular combinations of input and output representations permit a closed-form
solution. We argue that there are cases in which changing the input, internal, or output
representation can make a task easier to solve, even when it doesn’t have a closed-form
solution.
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3.5.2 Inputs

The function we’d like to learn takes input arguments α and ϕ, which are real-valued vectors.
We can design the inputs of the model to be similar and real-valued, or we can make them
complex-valued by design.

Amplitude-Phase. Arguably the simplest input representation is to simply concatenate
the amplitude and phase offset parameters into a real-valued vector,

x(ap) :=
[
· · · αi ϕi · · ·

]T ∈ R2K . (3.60)

Complex. Alternatively, the input parameters can be composed into complex numbers by
letting the phase offset represent the phase of a complex phasor.

x(c) :=
[
· · · αie

iϕi · · ·
]T ∈ CK . (3.61)

The vector x(c) is complex by design, where we use the phase of a complex number to
represent a parameter that represents rotation or angle.

Real-Imaginary. The complex vector in Eq. (3.61) could also be broken into its real and
imaginary parts to form a real vector.

x(ri) :=
[
Re
{
x(c)

}T
Im
{
x(c)

}T]T (3.62)

=
[
· · · αi cosϕi · · · a0 sinϕ0 · · ·

]T ∈ R2K . (3.63)

Augmented Complex. Finally, we may use the augmented complex vector, which is the
complex vector concatenated with its conjugate.

x(ac) :=
[(
x(c)

)T (
x(c)

)∗]T ∈ C2K , (3.64)

=
[
· · · αie

iϕi · · · αie
−iϕi · · ·

]T (3.65)

The mapping defined by complex conjugation is antilinear and, as such, it cannot be
computed by a complex matrix multiplication. Providing the input along with its
complex conjugate may provide a model additional necessary information to learn the
task. Indeed, using the augmented complex vector provides an easier path to modeling
the complete second-order statistical distribution of the data. Augmented inputs are
used in widely linear estimation, e.g. (see Mandic & Goh, 2009, chaps. 12, 13, and 15).

3.5.3 Targets

We examine real- and complex-valued versions of two closely related targets. The first is
a straightforward sum of sinusoids and the second uses the Hilbert transform to create an
analytic signal.
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Straightforward Target. We designate regular real and complex targets y(r) and y(c) as

y
(r)
t :=

∑
i

αi sin(ωit+ ϕi) (3.66)

=
∑
i

αi(sinωit cosϕi + cosωit sinϕi) and (3.67)

y(c) := y(r) + i0, (3.68)

where 0 indicates a vector of zeros.

Analytic Target. The analytic real and complex targets y(rh) and y(ch) are composed as
follows.

y(rh) :=
[(
y(r)

)T H
(
y(r)

)T]T and (3.69)

y(ch) := y(r) + iH
(
y(r)

)
, (3.70)

where H is the Hilbert transform (see Section 2.3). The green and orange lines in the
bottom axis of Fig. 3.5 show an arbitrary output of f and its Hilbert transform.

3.5.4 Architectures

We examine feed-forward models having one hidden layer, defined as

h = f
(
W (h)x+ b(h)

)
and (3.71)

ŷ = W (o)h+ b(o), (3.72)

where θ = {W (h),W (o), b(h), b(o)} are the model parameters. Designating M as the number
of input nodes (either M = K or M = 2K depending on the input type), and N = 100 as
the number of output nodes,

W (h) ∈ RM×M or W (h) ∈ CM×M (3.73)

b(h) ∈ RM or b(h) ∈ CM (3.74)

W (o) ∈ RN×M or W (o) ∈ CN×M (3.75)

b(o) ∈ RN or b(o) ∈ CN . (3.76)

Figure 3.6 gives a diagrammatic overview of this simple model architecture. In all cases the
inputs, weights, and outputs are in the same numerical domain. I.e., using the input x(r)

implies that the weights are real and that we are limited to the targets y(r) and y(rh).

3.5.5 Activation Functions

Identity. The identity function provides an entirely linear model.

f (−)(x) := x. (3.77)
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x

h

ŷ

Figure 3.6: Basic model architecture showing D = 3 input and hidden nodes, with
N = 100 output nodes.

Hyperbolic tangent. The hyperbolic tangent function is a sigmoid function that is real-
and complex-differentiable. It is a widely used nonlinearity for machine learning.

f (σ)(x) := tanhx. (3.78)

Split real-imaginary. We also test split real-imaginary activations on networks with com-
plex weights,

f (ri)(x) := tanh(Rex) + i tanh(Imx), (3.79)

where the nonlinearity is applied independently to the real and imaginary compo-
nents. The split real-imaginary activation is not complex-differentiable, but it is
real-differentiable with respect to its real and imaginary components.

Split amplitude-phase. The split amplitude-phase activation applies the nonlinearity to
the modulus of a complex-valued number and doesn’t modify the phase,

f (ap)(x) := tanh (|x|)ei arg x. (3.80)

This function is also not complex-differentiable.

3.5.6 Results

We evaluated several model configurations using disjoint training and testing data, denoted
X (tr) and X (te). That is, the α and ϕ parameters did not overlap in the two datasets, as
depicted in Fig. 3.7. Note that not only are the training and testing data disjoint, but the
numerical ranges that they cover are disjoint. That is, the training data consists of a range
of amplitudes that are non-overlapping in the test data. Similarly, the training data consists
of a range of phase offsets that are non-overlapping with test data.

We judge the success of a trained model by how well it makes accurate inferences from the
domain X (te) when trained solely using the disjoint domain X (tr). If a model can faithfully
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Figure 3.7: Non-overlapping training and testing data, shown in polar coordinates.

Table 3.4: closed-form linear solutions exist for some combinations of
input and output representations.

real complex
y(r) y(rh) y(c) y(ch)

x(ap) no no x(c) no yes
x(ri) yes yes x(ac) yes yes

produce the correct outputs given the non-overlapping and unseen testing data, then it has
successfully learned the underlying function.

All models were trained with data having angular frequencies ω =
[
6π 10π 14π

]
, which

are not harmonically related. Training was performed for 100 epochs using mini-batch
stochastic gradient descent with batch size B = 10 and learning rate <0.001. Denoting b
as the index of a training batch, we used a mean squared error loss function for real and
complex nets:

e(b) = y(b) − ŷ(b) (3.81)

L =
1

B

B−1∑
b=0

(
e(b)
)∗
e(b) (3.82)

Weights were initialized as normally random with a standard deviation of <0.001.

For a simple task such as the sum of sinusoids, the input, inner, and output representations
may matter quite a bit. First we note that there are five combinations of input and output
representation for which a closed-form linear solution exists, as summarized in Table 3.4. We
don’t present numerical results for these combinations, as the models are trivially able to
learn these configurations using SGD when the hidden layer is linear, i.e., the entire model is
linear. However some insight is provided in the following paragraphs.

When either of the real-valued output targets is used, y(r) or y(rh), the real-imaginary input
representation has a closed-form solution, while the amplitude-phase representation does not.
The former expresses the input in terms of Cartesian coordinates and the latter expresses
the input in terms polar coordinates. In the latter, phase is represented using a circular real
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Table 3.5: Training error and testing error for combinations of input representation,
output representation, and activation function for where a closed-form solution does
not exist. All networks have six units in their hidden layer. The best error, across
100 epochs is indicated, along with which epoch the error was recorded. Results
are sorted by ascending test error.

input target activation train error train epoch test error test epoch

x(c) f (c) f (ri) <0.001 100 4.6 100
x(c) f (c) f (ap) 0.1 100 8.3 8
x(c) f (c) f (−) 0.3 72 8.3 7
x(c) f (c) f (σ) 0.3 99 8.5 6
x(ap) f (r) f (σ) 0.2 100 9.6 2
x(ap) f (rh) f (σ) 0.2 97 9.7 2
x(ap) f (r) f (−) 0.2 70 10.0 1
x(ap) f (rh) f (−) 0.2 58 10.1 1

value, wrapping around from −π, to π, and cannot be expressed through a linear operation.
As Eqs. (3.67) and (3.69) show, the Cartesian representation closely corresponds to the target.
Considering that, by Fourier theory, any signal is decomposable into a set of sinusoidal
functions, we suggest that in cases where we have a choice between the two representations,
one may consider the Cartesian coordinate representation first.

When the target is made complex by simply adding zero-valued imaginary components, as
we do for the target y(c), the model must essentially learn the real operator. As shown in the
previous section, the real operator is a nonholomorphic function that relies on the conjugate
of its input.

There’s a closed-form solution to the task when the augmented complex input is used, and
no closed-form solution for the regular complex input. That is,

(
x(ac)

)T
θ exactly equals

y(c) when we let θ =
[
· · · −i

2 eiωi · · · i
2e−iωi

]T. We suggest that the augmented input be
used any time the task may require a mapping from a complex representation through a
nonholomorphic function.

We turn our attention to the networks’ behavior when a closed-form solution does not exist
with respect to the given input and output representations. Table 3.5 provides the best train
and test errors across a combination of input types, output types, and activation functions.
All models have six units in their hidden layer. The results are sorted by ascending test
error. (Note that the absolute test error cannot be compared easily with the absolute train
error because the average amplitude of the test targets is approximately twice as large as the
training targets.) The table shows that, in all cases, the complex input representation does
a better job at learning the sum-of-sinusoids function than the representations using real
inputs. The best performing model has a split real-imaginary activation function. Notably
the holomorphic hyperbolic tangent function gives the worst performance for the task. This
might be due to the singularities along the imaginary axis of its output. By examining
the values of the best epochs, it appears that only the first model has not suffered from
overfitting. For all other models the epoch yielding the best training error is much greater
than the epoch yielding the best test error.
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Figure 3.8: Model using regular complex inputs, regular complex outputs, and sigmoidal
activation on the real and imaginary components. Top: learning curves on the training
and testing sets. Middle: inference on a random example from the training set.
Bottom: inference on a random example from the testing set.
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The best model, which employs a sigmoidal activation function on the real and imaginary
components, is depicted in Fig. 3.8. The top panel of the figure shows the learning curves
for 100 epochs of training. It appears that the model has not converged and that, if trained
longer, it would continue to improve. The middle panel shows the model’s inference when
given a random draw from the training set. The output of the model is quite similar to the
ground truth. The bottom panel shows inference when given a random draw from the test
set. The inferred waveform follows the general shape of the ground truth but there are major
differences between the two signals.

Figure 3.9 shows a similar view of the best-performing model trained on real inputs. It’s clear
from the learning curve that the model is not able to learn the underlying sum-of-sinusoids
function and that learning has failed completely. As the training error decreases across epochs,
the testing error increases. Inference, when given a sample from the training set, produces
a waveform that has the approximate shape of the ground truth target. Interestingly, the
inferences from the training and test sets are very jagged compared to the best performing
complex model. We hypothesize that the constraints imposed by complex weights provide
regularization that helps to produce smoother inferences and to avoid overfitting to the
individual coordinates of the targets.
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Figure 3.9: Model using real amplitude-phase inputs, regular real outputs, and
sigmoidal activations. Top: learning curves on the training and testing sets. Middle:
inference on a random example from the training set. Bottom: inference on a random
example from the testing set.
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CHAPTER 4

Binaural Source Localization

In this chapter we propose complex neural networks for binaural source localization of
musical instruments, a task that has relevance to the fields of machine listening and music
information retrieval (MIR). Machine listening aims to endow computers with the ability
to make human-like decisions about sound. From the perspective of machine listening
researchers, it’s imperative for computers to succeed in listening skills that are innate for
humans, like source localization.

Human azimuthal localization is dependent on binaural spatial cues related to fine-scale
temporal differences of sounds arriving at the ears. These cues are encoded in audio, but
many methods for source localization rely on hand-engineered techniques to extract cues and
make inferences about source location. We suggest complex neural networks for this task,
since the complex-valued frequency-domain binaural audio preserves inter- and intra-channel
temporal differences. We show that feedforward networks with complex-valued weights and
activations are more adept at localization than other real-valued models. We also show
that the complex networks generalize better than real models across sounds filtered through
unseen models of human heads. This is notable accomplishment for improved machine
listening, as it’s been shown that humans can adapt in a similar way (Wenzel et al., 1993).
Other models in the literature do not show the same ability to generalize across varying
anatomical contexts.

Main contributions: We propose a feedforward network with complex-valued weights and
activations that takes as input the Discrete Fourier Transform (DFT) of a binaural audio
frame. We provide experimental results showing that this network outperforms its real-valued
counterpart. It also outperforms several baselines designed to extract binaural cues directly
from the audio. We provide statistical evidence that the complex neural network generalizes
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across unseen binaural filters, and that it does this better than the other models that we
tested.

We take a data-driven approach in this work, where a multi-layered neural network with
complex-valued activations is trained on a set of source signals convolved with a training
set of binaural filters. The use of deep complex neural networks in this application is novel.
Inference is fast since the model does not rely on temporal dependencies or learning at
inference time. We show that it is unnecessary to apply specialized feature-engineering to
extract spatial cues from the input signal. We let the model learn complex representations
directly from complex inputs. We show that our neural network performs better than baseline
neural models that explicitly extract complex cues (Tsuzuki et al., 2013) and that perform
frontal-plane localization directly from binaural cues (Dietz, Ewert, & Hohmann, 2011).

Relationship to the literature: A complex network for stereo (non-binaural) microphone
localization has been proposed by (Tsuzuki et al., 2013). The authors manufacture an input
feature vector that summarizes inter-channel phase differences over a range of rotated signals,
similar to the MUSIC (Schmidt, 1986) algorithm. The search space is determined as a
function of distance between microphones, which should be known a priori. Their network
is shallow (one hidden layer) while, in contrast, we use a deeper network, a different loss
function, different nonlinearities, and train on a large set of binaural filters. We show that
their features perform poorly in a complex network for binaural localization.

Direction-of-arrival inference from multichannel microphone arrays, in which the real-valued
phases of an STFT are given as the input to a convolutional neural network, is presented
in (Chakrabarty & Habets, 2017). The model is trained by exciting a microphone array
with broad-spectrum noise aimed from various angles. Thus the model is not dependent on
source material and is shown to be robust to different room conditions, noise conditions, and
small perturbations of microphone placement. Their paper is not concerned with the specific
challenge of generalizing across multiple heads or with microphone arrays of size less than
four.

In contrast to the existing literature, we do not attempt to prove that the network generalizes
to diverse source signals. Rather, we show that it generalizes to diverse and unseen binaural
filters, or human heads. To this end, we do not examine the robustness of the network to
corrupted input signals and reverberant environments. This thesis focuses on localization of
a musical source in the full lateral plane and does not examine whether such models would
also be suitable for inference of elevation.

In the following sections, we describe the binaural localization task, followed by a description
of the complex model. Experimental results are provided in Section 4.3. We provide
concluding remarks and discussion in Section 4.4.

4.1 Binaural Music Source Localization Task

Binaural source localization is a computational auditory scene analysis task concerned with
determining the relative location(s) of sources by analyzing an audio signal that has been
filtered by a human head. Musical source localization may provide useful information about
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Figure 4.1: Cones of confusion. sounds arriving along the cone have similar ITD and
ILD, making them difficult to distinguish.

the context of a live performance to a remote audience, or to performers who are not co-
located. Concert hall design may benefit from analyses that take into account the apparent
locations of musical sources relative to human listeners. Localization of musical objects in a
multichannel recording can be precursor to multichannel source separation algorithms that
rely on spatialization, as in (FitzGerald, Liutkus, & Badeau, 2016).

More generally, binaural localization finds applications in hearing aid design, humanoid robot
perception, head tracking, and augmented reality. Computer-based localization may assist
hearing-damaged individuals, provide augmented hearing acuity when ears are obstructed by
devices such as headsets, or enhance ordinary hearing capabilities. Generalizable models are
desirable so that a system need not be fine-tuned to the characteristics of each individual’s
head. We’d like source localization to work out-of-the-box, without taking measurements of
each user’s head or storing a lookup table of many head filters.

According to duplex theory (Middlebrooks & Green, 1991) human localization employs
monaural and binaural psychoacoustic cues. The binaural cues combine frequency-dependent
inter-aural time or phase differences (ITD; IPD) and inter-aural level differences (ILD).
It’s believed that we use IPD cues to locate frequencies approximately below 1.5 kHz, and
ILD otherwise. Despite human adeptness, localization is susceptible to errors along “cones
of confusion,” depicted in Fig. 4.1, where it’s common to mistake the locations of sources
at symmetric angles about the ear. The irregular shapes of the outer ears provide an
additional monaural filtering mechanism, helping to resolve such confusions. Binaural source
localization systems typically model the way humans extract spatial cues and suffer from
similar confusions.

Virtually all source localization systems include a feature-engineering stage at the front end
that manipulates the time domain or frequency domain signals to extract ITD/IPD- and
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ILD-like spatial cues. Many systems are non-parametric and require storage of a dataset of
cues and associated locations, which are later matched during inference (D. Li & Levinson,
2003; Liu, Pang, & Zhang, 2015; Liu & Zhang, 2014; Liu, Zhang, & Fu, 2014; Nix &
Hohmann, 2006; Raspaud, Viste, & Evangelista, 2010; Talagala, Wu, Zhang, & Abhayapala,
2014; Wu, Talagala, Zhang, & Abhayapala, 2015, 2016).

For supervised systems that do not store a table of spatial cues, it is generally assumed that
the set of binaural filters will not differ between training and inference time. For example,
(Deleforge, Forbes, & Horaud, 2015; Woodruff & Wang, 2012) show the efficacies of their
systems by training and testing using the same sets of binaural filters. These systems cannot
claim that their methods generalize to unseen heads. In contrast, a few unsupervised methods
have been proposed, e.g. (Mandel, 2010; Talagala, Zhang, Abhayapala, & Kamineni, 2014).
However they require sufficiently large data to accumulate statistics for decision making and
therefore may not be well-suited to real-time inference.

4.2 Complex Feedforward Binaural Localization

4.2.1 Training signal

Given a frame of binaural audio having N samples, let ln and rn, with n = 0, 1, . . . , N − 1,
denote the left and right channels. The channels are transformed to the frequency domain,
truncated, and concatenated,

l̂k =

N−1∑
n=0

lne−i2πkn/N (4.1)

r̂k =

N−1∑
n=0

rne−i2πkn/N (4.2)

xk =
[
l̂k r̂k

]T
, (4.3)

with the index k ∈ {0, 1, . . . , N/2} representing a non-conjugate frequency bin.

Azimuth locations are discrete; each ground truth location in the dataset is represented as a
binary-valued one-hot vector with D dimensions, as

y ∈ ZD2 . (4.4)

For example, if yi has the value 1, then all other elements of y must have the value 0
and the target is a member of the i-th class. Thus the input to the model is the pairwise
complex-valued DFTs of binaural audio, x. The output of the model is the inferred azimuthal
angle of the sound source represented as a one-hot vector. The model learns a mapping

f : x ∈ CN+2 7→ ŷ ∈ RD, (4.5)

from complex spectra to a probability distribution over azimuth classes. We minimize the
cross entropy between the training target y and the inference ŷ. Aside from the initial

- 48 -



4. Binaural Source Localization

Complex

N
on

lin
ea

r (
51

2)R
ig

ht
 (5

13
)

Le
ft 

(5
13

) N
on

lin
ea

r (
25

6)

N
on

lin
ea

r (
12

8)

R
ea

l (
12

8)
Im

ag
 (1

28
)

So
ftm

ax
 (2

4)

Real

Figure 4.2: Architecture of the binaural source localization model. Numbers in
parentheses indicate number of units. The left and right frequency-domain inputs are
fed into three complex nonlinear layers. The real and imaginary parts of the third
layer are concatenated into a real vector, which is followed by a final nonlinear layer
with a softmax activation.

transformation to the Fourier domain, i.e., Eqs. (4.1) to (4.3), no hand-engineering is applied
to produce the input features.

4.2.2 Model

We use a dense multilayer perceptron, depicted in Fig. 4.2, with activations computed on the
complex field. The architecture of the neural network with L layers and indices l = 0, . . . , L
is as follows. We designate parameters of the network as θ = ({W (l), b(l)})l 6=0, and let

z(l) = aW (l)h(l−1) + b(l) (4.6)

h(l) = σ(l)
(
z(l)
)
, (4.7)

where σ(l) is an element-wise activation function. We designate the cardinality of each layer
as M (l), with M (0) = N + 2. Each hidden layer has complex-valued weights and biases,

W (l<L) ∈ CM×M
(l−1)

and (4.8)

b(l<L) ∈ CM
(l)

, (4.9)
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Table 4.1: Nonlinearities for complex neural networks.

Nonlinearity σ(z) =

tanh tanh z
cartTanh tanh (Re z) + i tanh (Im z)
cartReLU max(Re z, 0) + i max(Im z, 0)
modTanh tanh |z| · ei arg z

modReLU (Arjovsky et al., 2016)

{
(|z|+ β) · ei arg z if |z| > 0

0 otherwise

and the final output layer utilizes real weights and biases,

W (L) ∈ RD×2M
(L−1)

and b(L) ∈ RD. (4.10)

The complex weights are initialized with orthogonal vectors, as suggested in (Trabelsi et al.,
2017). The model’s inputs and outputs are denoted

x , h(0) and (4.11)

ŷ , h(L). (4.12)

Table 4.1 lists the activation functions examined in this work. The modReLU activation has
been previously proposed in (Arjovsky et al., 2016) and includes an additional parameter β.
There is no established consensus in the literature on the appropriate choice of activation
function for complex networks. As a consequence of Liouville’s theorem, which states that
any holomorphic function is unbounded unless it is a constant, choosing a complex-analytic
function implies choosing an unbounded function. Yet boundedness has been considered a
desirable property for optimization in real networks. E.g., logistic sigmoids are bounded in
the range [0, 1] and rectified linear units (ReLUs) are bounded in the range [0,∞). This fact
may make complex-analytic activations such as the hyperbolic tangent function, which has
regularly spaced singularities along the imaginary axis, undesirable. We investigate both
complex-analytic and real-analytic activations to try to gain some insight about whether one
type is more desirable than the other.

4.2.3 Inference and loss

The final hidden layer is transformed to real by splitting the real and imaginary parts,

ĥ
(L−1)

=
[
Re(h(L−1)) Im(h(L−1))

]T
(4.13)

z(L) = W (L)ĥ
(L−1)

+ b(L) (4.14)
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Finally we compute the softmax function to produce the output layer,

σ(L)(z) =
ezd∑D−1
d=0 ezd

(4.15)

ŷ = σ(L)(z(L)). (4.16)

The output layer is interpreted as a probability distribution and we compute the loss using
cross-entropy,

L(y, ŷ) = −
∑
d

yd log ŷd. (4.17)

It can be shown using the Wirtinger Calculus (Wirtinger, 1927) that a scalar real-valued
function of arbitrary complex variables z ∈ CN may be minimized by defining the cogradient
and gradient operators respectively,

∂

∂z
:=
[
∂
∂z0

∂
∂z1

· · · ∂
∂zN−1

]
and (4.18)

∇z(·) =

(
∂(·)
∂z

)∗
. (4.19)

The network is optimized using Eq. (4.19) and the Adam algorithm (Kingma & Ba, 2014).

4.3 Experiments

Two sets of source audio were used. The first set, “Music,” was selected from a studio
recording of Vivaldi’s Concerto No. 1 in E major, Op. 8, RV 269 found in the MedleyDB
dataset (Bittner et al., 2014). It is comprised of five clips of raw audio recordings, 21 seconds
in duration each, corresponding to the double bass, cello, viola, violin 1, and violin 2. The
second set, “Noise” consists of white uniform noise. The “Noise” dataset was chosen as a
control group to compare against the “Music” sources. Since it contains equal energy across
the spectrum, Noise excites the full frequency range of the binaural filters. We expect that
the relatively sparse Music data should be more difficult to learn because Music presents the
model with material that excites fewer components of the binaural filter.

Binaural recordings were synthesized by convolving source audio with head-related impulse
responses (HRIRs), which are recordings of wide-band sounds that have been directed at
a human head and measured inside the ears using in-ear microphones. The sounds are
propagated at regularly spaced angles with respect to the human head. The impulse responses
therefore encode the sound filter created by the anatomical properties of the head. We used
the binaural filters from IRCAM’s Listen HRTF Database1, which contains HRIRs for 51
human subjects recorded using in-ear microphones in an anechoic chamber. For each subject,
187 measurements have been recorded across a range of azimuths and elevations.

1Available online at http://recherche.ircam.fr/equipes/salles/listen/download.html
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Table 4.2: Dataset partition.

Dataset # Subjects Hours # Obs.

Train 25 18.6 2,823,000
Validation 13 9.3 1,467,960
Test 13 9.3 1,467,960

We convolved each of the five music audio recordings and an equal number of samples of noise
with D = 24 compensated2 azimuthal HRIRs at 0° elevation for each human subject in the
IRCAM dataset. (HRIRs corresponding to other elevations were not used.) The azimuthal
HRIRs were equally spaced along the lateral plane, with 15° spatial resolution. The sampling
rates of the HRIRs and the source audio was 44,100Hz. The synthesized binaural recordings
were normalized such that the maximum amplitude in at least one channel was 1.0.

The binaural recordings were broken into rectangular non-overlapping frames of N = 1024
samples, and each frame was treated as an independent observation. In some experiments
(see below), we applied a high-pass or low-pass filter to all of the observations in the dataset.
The dataset was subsequently partitioned randomly by HRIR subject into disjoint training,
validation, and test sets providing subsets of approximately 2.8 million training observations
(25 subjects) and 1.5 million validation and testing observations (13 subjects each) for “Music”
and “Noise” each. The partitioning is summarized in Table 4.2. Frames with low energy
relative to the dataset are likely to lack meaningful content. E.g., they may correspond to
silences near the endpoints of the source files or room noise between instrument onsets. To
avoid training and evaluating on such data, we sorted the frames by increasing RMS energy
and discarded all observations within the first 10th percentile.

We describe several experiments in the following subsections. In all cases we use accuracy as
the evaluation metric. Denote y(i) and ŷ(i) the target and inference associated with the i-th
test example in dataset X . Accuracy is defined as follows.

a =
100

|X |

|X |−1∑
i=0

{
1 if y(i) = ŷ(i)

0 otherwise
. (4.20)

In order to facilitate comparison, all models, except where noted, have a similar architecture,
with L = 4 layers having sizes M = (512, 256, 128, 24). Individual models were trained until
no improvement was shown on the validation set for two consecutive training epochs.

Significant differences in accuracy are indicated by bold font in the tables of results. We use
the Wilcoxon signed-rank test to determine significance. The test is applied on the thirteen
pairs of average accuracies for two models, aggregated by the thirteen subjects in the test set.
The null hypothesis is that the median difference in average accuracy between two models
is zero. The null hypothesis is deemed incorrect, i.e., models were deemed significantly
different, when the p-value of the Wilcoxon signed rank test was less than 0.1. We say with
95% confidence that any model whose accuracy is shown in bold is better at generalizing to
unseen heads than the comparison models.

2The “compensated” measurements have been equalized to remove the spectral characteristics of the
recording system and reproduction system.
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Figure 4.3: Confusion matrices. Top: best complex model. Bottom: baseline complex
model using features proposed in (Tsuzuki, Kugler, Kuroyanagi, & Iwata, 2013).
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Table 4.3: Comparison of signal domains and nonlinearities for models
with complex inputs and weights. Table 4.1 gives the equations for
the nonlinearities.

accuracya

input transform activation Music Noise

STFT cartReLU 0.817 0.829
STFT modTanh 0.793 —

waveform cartReLU 0.776 —
waveform modTanh 0.769 —
STFT cartTanh 0.763 —
STFT modReLU 0.753 —

waveform modReLU 0.742 —
waveform cartTanh 0.709 0.810
waveform tanh 0.045 —
STFT tanh 0.042 —

a Highlighted indicates Wilcoxon signed-rank test with p-value < .05 for
per-subject mean accuracy.

4.3.1 Overall accuracy

The confusion matrix for our best performing complex model, which uses a cartReLU
nonlinearity and has 81.7% accuracy, is shown in the top axis of Fig. 4.3. Nearly all
misclassifications are between the neighboring classes and along the cones of confusion,
where not much information can be gleaned from inter-aural cues. If we consider predictions
correct when they are no more than one azimuthal location away from the ground truth, the
accuracy is 96.9%. If we also consider errors along the cones of confusions to be correct, the
accuracy is 99.7%. The bottom axis of Fig. 4.3 shows the confusion matrix for a baseline
complex model using features proposed in (Tsuzuki et al., 2013). The baseline model, which
has 67.6% accuracy, is discussed in more detail below.

4.3.2 Nonlinearity

Table 4.3 shows the effect of using various nonlinearities with our proposed model. (Table 4.1
provides the respective equations.) The cartReLU activation, in which a rectified linear
unit is placed upon the real and imaginary parts of the pre-activation, provides significantly
better performance than the other activations. The hyperbolic tangent function performs
predictably bad because we made no attempt to clip the singularities that occur along the
imaginary axis. All results presented below this point use the cartReLU nonlinearity for
complex hidden layer activations and ReLU nonlinearity for real hidden layer activations.

4.3.3 Complex vs. real weights

We test whether using complex weights provides an advantage to the network over real
weights. We also examine whether models that are trained on low-passed or high-passed
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Table 4.4: Complex weights are better than real weights for music
and high-passed noise inputs.

accuracya

weight domain input filter Music Noise

complex none 0.817 0.829
real none 0.809 0.813

complex lowpass 0.734 0.797
real lowpass 0.724 0.795

complex highpass 0.831 0.817
real highpass 0.817 0.800

a Highlighted indicates Wilcoxon signed-rank test with p-value < .05 for
per-subject mean accuracy.

Table 4.5: Real-imaginary features are better than magnitude-phase
and univariate real features.

accuracya

input transform feature Music Noise

STFT real-imaginary 0.809 0.813
waveform amplitude 0.775 0.799
STFT magnitude 0.762 —
STFT magnitude-phase 0.743 —
STFT phase 0.586 —

a Highlighted indicates Wilcoxon signed-rank test with p-value < .05 for
per-subject mean accuracy.

signal perform significantly different. The filters have a cutoff frequency of 1.5 kHz, which
corresponds approximately to the frequency below which IPD cues dominate and above
which ILD cues dominate. Table 4.4 shows that networks with complex weights perform
significantly better than those with real weights when trained and evaluated on the Music
data. Performance on low-passed data, where inter-aural phase cues should dominate, are
lower regardless of the numerical domain. However the complex activations provide an
advantage. We see no significant difference between models for fullband and lowpass noise.
We expect that the additional excitation across spectral components gives the real model
more information from which to learn.

4.3.4 Input feature for real models

We also examine whether models having real-valued inputs and weights gain an advantage
when the features are similar to complex-valued DFT inputs, i.e., when we provide the
model real and imaginary parts but treat them as independent. If the real-imaginary
input representation is useful then we should be able to show a significant boost over other
representations even when the weights and activations of the model are real. Table 4.5 shows
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Table 4.6: Best complex-weight model outperforms baseline complex-
weight model (Tsuzuki, Kugler, Kuroyanagi, & Iwata, 2013) and
baseline auditory model (Dietz, Ewert, & Hohmann, 2011).

accuracya

feature Music Noise

complex 0.817 0.829
Tsuzuki et al. (2013) 0.676 0.520
Dietz et al. (2011) 0.769 —

a Highlighted indicates Wilcoxon signed-rank test with p-value < .05 for
per-subject mean accuracy.

that the best performing real model employs a “complex-like” input representation, where
the real and imaginary parts of the complex DFT have been concatenated.

The models that have been trained with phase on the polar coordinate system perform the
worst, but this isn’t very surprising. The values 0 and 2π − ε, where ε is a small number,
are close together on the polar coordinate system but may appear distant from each other
when viewed on the real line. Optimizing a network to learn these relationships appears to
be difficult using traditional techniques.

4.3.5 Baseline models

Finally, we compare our model against several others in the literature. Tsuzuki et al.
(Tsuzuki et al., 2013) proposed a complex neural network for localization. There are
significant differences between their work and ours. First, their system performs localization
from a stereo microphone array; binaural audio is not considered. Secondly they focus on a
regression, rather than classification, task. Finally, the foundation of their method relies on
a costly complex-domain feature extraction step. We implemented their feature extraction
method and used it in our network. Table 4.6 reports the results, which are significantly
worse compared to our proposed model.

As a final baseline, we compare our model to one that doesn’t rely on any neural network.
Dietz et al. (Dietz et al., 2011) provide a binaural auditory model of ITD and ILD for
estimation of frontal plane azimuthal sources. A series of spatial cue extraction steps are
performed on the left and right channels of binaural audio. The ITD is estimated from the
source signal and compared to a lookup table of responses computed using known HRIRs.
We use the implementation provided with the Auditory Modeling Toolbox (Søndergaard &
Majdak, 2013), which provides the code and model parameters associated with the paper.
Table 4.6 shows that the auditory model achieves 76.9% on the frontal only portion of our
test set. Much worse performance occurs (not shown) when evaluated on the full test set.
Note that a direct comparison between models is not yet possible because our models were
trained on the full lateral plane. Considering that a large portion of our model’s error is
dominated by front-back confusions, we expect that the performance difference would be
larger if we were to train our model only on the frontal plane.
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4.4 Discussion and future work

We proposed a complex feedforward neural network that localizes azimuthal source location
from binaural audio. We showed that the complex network has better generalization
performance across unseen binaural head filters than a comparable real-valued model and
several baselines. We believe this work is important because it shows that latent spatial
cues of the complex-valued input signal can be directly learned by a neural network, and
that these might be superior to hand-engineered features. Furthermore it shows that using
complex weights and complex matrix multiplications may be advantageous over their real
counterparts for a task that depends on phase-related cues.

We were genuinely surprised that the cartReLU nonlinearity provided best performance
for our model. This function effectively limits the activation to the positive quadrant of
the Cartesian coordinates. We will investigate this phenomenon further in future work.
We’re also eager to test our system on more diverse, noise-corrupted, and reverberant source
signals. Doing so will help us understand whether the proposed model is robust to real-world
environments.

Finally, we will investigate multi-source localization using neural networks with complex
activations and multi-frame inputs. We believe that, by fashioning the model to perform
location inference on individual time-frequency bins, a similar system might perform source
separation and localization on an unknown number of sources.
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CHAPTER 5

Speech Enhancement

Speech enhancement, sometimes also known as monaural speech separation, is the task
of removing interfering noise from recorded speech. Humans are naturally able to focus
their attention on speech in the presence of interfering sounds. We’re incredibly good at
this, even in quite challenging acoustic contexts, and our aim is to provide algorithms that
can do the same. Given an audio recording of a speaker that the model has never seen,
embedded in stationary and non-stationary noise that we’d find in the real world, an ideal
speech enhancement algorithm should completely remove all non-speech audio, synthesizing
“clean” speech that is free of artifacts. Good speech enhancement is related to good machine
listening, where a computer is able to make human-like decisions about sound.

In this work, we report on a speaker-independent method for separating speech from highly
non-stationary noise, such as blaring television sounds and laughing children. The solution
to this task is highly relevant, as improved enhancement can bring better hearing aids and
more accurate automatic speech recognition systems. The proposed method uses two deep
neural stages. In the first, we train a generative vector quantization model. In the second,
we train a dynamic speech enhancement model.

Recent speech enhancement systems have explored deep neural networks (Kolbæk, Tan, &
Jensen, 2017; Pascual, Bonafonte, & Serrà, 2017; Vu, Bigot, & Chng, 2016; Xu, Du, Dai,
& Lee, 2015; Xu, Du, Huang, Dai, & Lee, 2015). At the same time, many papers have
focused on mask approximation (MA) or signal approximation (SA) (P.-S. Huang et al.,
2014; Narayanan & Wang, 2013; Xu, Du, Huang, et al., 2015) techniques. In the first
case, a model learns to infer a real or binary-valued mask that, when applied to a “noisy”
mixture of interfering noise and “clean” speech, returns just the clean speech. In the second
case, real-valued clean spectra are estimated directly from noisy speech. Its been recently
shown that phase-sensitive signal approximation (PSA) improves enhancement performance
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(Erdogan, Hershey, Watanabe, & Le Roux, 2015; Weninger et al., 2015), but otherwise
speech enhancement tasks typically treat phase as an afterthought. One notable exception is
Williamson, Wang, and Wang (2016), who propose complex domain mask estimation.

In this work, we depart from MA, MSA, and PSA approaches. Rather, we train a generative
dictionary model using a stochastic autoencoder called a Conditional Vector Quantization
(Conditional VQ) model. Conditional VQ is a stochastic autoencoder that is trained to
learn a discrete latent space. It is conditioned on Short-Time Fourier Transform (STFT)
frames extracted from clean training data. In the second stage, we train a dynamic speech
enhancement (DSE) encoder to map noisy STFT spectra to Conditional VQ codes. The DSE
encoder is also a generative model, where frames of clean speech are sampled, conditioned
on a sequence of noisy spectra.

The following observations motivate us to project our audio to a discrete latent space. First,
recent methods in audio synthesis methods, for example WaveNet (van den Oord et al., 2016),
have shown the feasibility of transforming an audio regression task to an audio classification
task by discretizing the signal. In that work, raw audio is preprocessed by applying a
µ-law companding transformation and then quantizing it to 256 values. We observe that
discretization allows some conveniences, such as allowing us to use a cross-entropy (CE) loss
function, rather than mean squared error (MSE). MSE assumes that a model’s residual will
follow a Normal distribution with fixed variance. The cross entropy loss function doesn’t
carry the same assumptions, namely that “over-predicting” an output is equally as bad as
“under-predicting” an output.

Secondly, a discrete representation allows the use of dictionary methods, where we can
perform inference over full frames of audio, rather than samples. One criticism of the original
WaveNet paper was that inference is too slow for practical use. WaveNet is a sample-level
autoregressive model. Our model performs inference over vectors of audio, rather than
samples. Using a stochastic vector quantization scheme opens doors to an autoregressive
model that is more compact than WaveNet, although we reserve autoregressive models for
future work.

Finally we investigate real and complex-field training and inference. In the former case, our
real Conditional VQ model is trained on the magnitude spectra of clean training speech to
infer a latent discrete representation. The real DSE encoder maps noisy magnitude spectra
to the conditional latent space. We use the real Conditional VQ decoder to return our codes
back to the audio magnitude spectral domain. Reconstruction is performed using the noisy
signal phase. We also train the Conditional VQ and DSE models to map complex spectra.
In this case, phase and magnitude are reconstructed jointly, without any need to use the
noisy phase.

The proposed complex models are not able to beat the performance of the current state of
the art speech enhancement model. However we note that complex-domain deep learning
is a nascent field, one which has not been studied as closely or for as long as the broader
domain of deep leaning. This chapter serves as a guide to integrating complex methods into
a difficult task that might later benefit from complex representations.

In the following section we provide background to our methods and how they relate to the
literature. We present the models in Section 5.2. Experiments are described in Section 5.3,
followed by concluding remarks.
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5.1 Related Work

Conditional VQ falls within the general category of dictionary and basis learning methods.
There is a rich history of literature on dictionary methods for speech enhancement. Ellis and
Weiss (2006) proposed training a speaker-dependent codebook for speech enhancement. Re-
cent works focus on nonnegative matrix factorization (NMF), or variants thereof (Smaragdis,
Raj, & Shashanka, 2007; Wang & Sha, 2014; Weninger, Le Roux, Hershey, & Watanabe,
2014), as well as proposals to combine NMF with deep learning methods (Kang, Kwon, Shin,
& Kim, 2015; Le Roux, Hershey, & Weninger, 2015; Vu et al., 2016).

In this work, vector quantization is achieved using an autoencoder with a discrete binary-
valued hidden layer. In principle, this brings the model under the umbrella of deep hashing
binary autoencoders, such as found in (Carreira-Perpinan & Raziperchikolaei, 2015; Liong,
Lu, Wang, Moulin, & Zhou, 2015), except that these models are motivated by creating
distance-preserving binary encodings of their inputs, whereas there’s no distance criteria
in out model. Furthermore, our binary encodings are organized into groups representing
K-class categorical distributions.

Our vector-based approach may be related to Efficient Neural Audio Synthesis, which brought
improvements to WaveNet efficiency by using tensor sub-scaling (Kalchbrenner et al., 2018).
Both models infer vectors rather than samples of audio. However our model infers the
Conditional VQ discrete latent space, whereas Efficient Neural Synthesis infers audio more
directly.

Our Conditional VQ model is a sparse, stochastic autoencoder. The encoder maps audio to
the probabilities of a set of categorical distributions. We sample from these in parallel and
the decoder provides a nonlinear deterministic mapping back to the audio domain. Training
a stochastic model brings many additional complications. In particular, the gradient of
a stochastic layer is intractable and we therefore must employ a gradient approximation
technique. One popular approach is the score function estimator (Kleijnen & Rubinstein,
1996), also known as likelihood ratio method (Glynn, 1990) and REINFORCE (Williams,
1992). Score function estimators are known to suffer from high variance.

Another approach, when available, is to generate samples from a surrogate distribution,
one that does not depend on the parameters of the model. The samples are subsequently
transformed, using model parameters, to a different distribution that exhibits desirable
properties. For instance the variational autoencoder (Kingma & Welling, 2013) uses the
reparameterization trick by approximating the posterior with a standard centered Gaussian
distribution that is subsequently transformed to a non-standard uncentered distribution.
Our model uses the reparameterization trick by replacing the Categorical distribution
with the Concrete distribution (Maddison, Mnih, & Teh, 2016), equivalently known as the
Gumbel-Softmax distribution (Jang, Gu, & Poole, 2016). This method provides a rather
straightforward way for training a stochastic network.

The DSE encoder is composed of a stack of bidirectional gated recurrent units (GRUs) (Cho
et al., 2014). Our model is not autoregressive, like WaveNet. Rather, it infers the independent
probabilities of a set of relaxed categorical distributions, conditioned on a sequence of frames
of noisy speech. Recent temporally dynamic speech enhancement models have shown to be
very successful (Erdogan et al., 2015; Weninger et al., 2015).
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Deep complex models are just beginning to gain popularity (Trabelsi et al., 2017). Drude et al.
(2016) investigated the feasibility of using partially complex networks for speech enhancement.
The architectures of their models are quite different, including different choices for input
representation, activation function, and model architecture. Williamson et al. (2016) propose
complex mask estimation, where a deep network infers the real and imaginary coefficients of
a complex mask. The inputs to the model are a set of real-valued hand-engineered features.
The model itself is also real-field, but it is optimized using a phase-sensitive cost function.

5.2 Model

We perform speech enhancement by training two models. The first, Conditional VQ, is
a stochastic autoencoder. Its innermost layer provides the log probabilities to N K-class
distributions. The Conditional VQ model infers a latent discrete representation for frames of
clean speech. The DSE encoder maps a sequence of dirty frames to the latent discrete space
of the clean speech.

5.2.1 Inputs and Outputs

We consider an STFT-transformed utterance of noisy speech and an accompanying STFT-
transformed utterance of clean speech (Y ,S) ∈ CF,T , where F is the number of frequency
bins and T is the number of time frames. Considering for a moment the i-th frame, the
inputs to our models are one of the following:

Real. The magnitude spectrum.

s(r) :=
[
|S0,i| |S1,i| · · ·

∣∣SF/2,i∣∣]T (5.1)

Real-imaginary. The real and imaginary components of the spectrum.

s(ri) :=
[
ReS0,i ReS1,i · · · ReSF/2,i ImS0,i ImS1,i · · · ImSF/2,i

]T (5.2)

Complex. The complex spectrum, with the conjugate frequencies truncated.

s(c) :=
[
S0,i S1,i · · · SF/1,i

]
T (5.3)

Augmented complex. The full complex spectrum. This is referred called “augmented” by
convention, as the conjugate frequencies are typically discarded.

s(ac) := S·,i (5.4)

We designate the estimated clean speech with a hat symbol, e.g. the estimated augmented
complex speech is ŝ(as).

The DSE encoder takes a sequence of noisy frames as input and makes an inference in the
discrete latent space of the Conditional VQ encoder. The same labels as above are used to
designate the outputs. E.g. a frame of real-valued dirty speech is y(r).
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Figure 5.1: Conditional VQ model.

5.2.2 Conditional VQ

The encoder is an M -layer feedforward neural network that acts as a preconditioner to N
relaxed categorical distributions having K classes. The distributions are jointly sampled to
provide excitation signals to an M ′-layer nonlinear decoder. The following sections explain
the encoder and decoder, as well as the optimization procedure. Figure 5.1 provides a
high-level diagram of the model.

5.2.2.1 Encoder

The encoder is a fully-connected nonlinear preconditioning network followed by a layer of
stochastic cells. The i-th preconditioning layer, with i = 0, 1, . . . ,M , is composed as follows.

f (0) := s, and (5.5)

f (i) = σ(i)
(
W (i)f (i−1) + b(i)

)
, (5.6)

where σ(i) is an activation function, with the condition that σ(M) is a linear activation
function. If this is a complex Conditional VQ model, then the real and imaginary parts of
f (M−1) are concatenated into a real vector before the final linear projection.

f (M−1) :=

[
Ref (M−1)

Imf (M−1)

]
if the model is complex. (5.7)

- 63 -



5. Speech Enhancement

The final layer f (M) is split into N non-overlapping groups of size K. For j = 0, 1, . . . , N −1,

f (Mj) =


f
(M)
jK

f
(M)
jK+1
...

f
(M)
jK+K−1

. (5.8)

Let α(j) = exp
{
f (Mj)

}
be the exponentiation of one such group. We treat α(j) as the

unnormalized locations to a Concrete distribution, Concrete(α(j), λ), which we briefly
describe below. For more detail see (Maddison et al., 2016).

The Concrete distribution uses a surrogate distribution, the Gumbel distribution, to ap-
proximate a Categorical distribution. We cannot use the Categorical distribution directly
because it is not differentiable. The Concrete distribution employs the “reparameterization
trick,” in which a non-differentiable function is approximated by reparameterizing it with a
differentiable function. Consider a sample u(j)k drawn from the Uniform distribution that
corresponds to the k-th element of α(j),

u
(j)
k ∼ U(0, 1). (5.9)

The sample u(j)k is transformed into a sample g(j)k from the Gumbel distribution in the
following way,

g
(j)
k = − log

(
− log

(
u
(j)
k

))
. (5.10)

The corresponding sample from the Concrete Distribution is provided by

z
(j)
k ∼ Concrete(α(j), λ) (5.11)

=
exp

((
logα

(j)
k + g

(j)
k

)/
λ
)

∑K−1
i=0 exp

((
logα

(j)
i + g

(j)
i

)/
λ
) , (5.12)

where λ is a temperature hyperparameter. Lowering λ makes the distribution more discrete,
and raising the temperature softens the distribution. Hence the encoder provides a mapping
from s to a set of N K-class categorical samples, which are encoded as one-hot vectors,

s 7→
{
z(j) : z(j) ∈ ZK2 and j = 0, 1, . . . , N − 1

}
. (5.13)

5.2.2.2 Decoder

The decoder is a deterministic feedforward network. It maps the categorical encodings of
Eq. (5.13) through a densely connected network to produce inferences about the encodings.
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First we concatenate the samples, which are represented by one-hot vectors,

f (M+1) := concat
({
z(j)

})
(5.14)

:=


z(0)

z(1)

...
z(N−1)

. (5.15)

If this is a complex Conditional VQ model, then the first layer is made complex by adding
zero-valued imaginary coefficients,

f (M+1) := h(M+1) + i · 0 if model is complex. (5.16)

The decoder is composed of M ′ layers, i.e. for i = M + 2, . . . ,M +M ′ + 2,

f (i) = σ(i)
(
W (i)h(i−1) + b(i)

)
, (5.17)

where σ(i) is an activation function, with the condition that σ(M+M ′+2) is a linear activation
function. We define the output of the Conditional VQ model as

ŝ := f (M+M ′+2). (5.18)

5.2.2.3 Optimization

The Conditional VQ objective function is Mean Squared Error,

e = s− ŝ, (5.19)

L(CVQ) =
1

D
e∗e (5.20)

Because the model employs the reparameterization trick, the Jacobian of the Concrete
distribution with respect to the model parameters is well-defined and tractable. We therefore
backpropagate the error e in the same way that we would for a non-stochastic network.

5.2.3 DSE Encoder

The DSE model, which is depicted in Fig. 5.2, encodes a sequence of noisy audio frames. Let

g(0) := y. (5.21)

If the model is complex, then we precondition the encoder using a fully connected L′-layer
complex nonlinear network and concatenate the real and imaginary components at the
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Figure 5.2: DSE Encoder model.

output. For i = 1, 2, . . . , L′, with L′ > 0 if the model is complex,

g(i) = σ(i)
(
W (i)g(i−1) + b(i)

)
, and (5.22)

g(L
′) :=

[
Re g(L

′)

Im g(L
′)

]
. (5.23)

We follow with L layers, where the first L−1 are a stack of bidirectional Gated Recurrent Units
(GRUs) and the L-th layer is a linear projection. That is, for i = L′+1, L′+2, . . . , L′+L−1,

g(i) = GRU
(
g(i−1)

)
and (5.24)

g(L
′+L−1) = W (L′+L)g(L

′+L−1) + b(L
′+L). (5.25)

The output is split into N groups of k-class categorical distributions

g((L
′+L)j) =


g
((L′+L)j)
jK

g
((L′+L)j)
jK+1

...
g
((L′+L)j)
jK+K−1

 (5.26)
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where we denote α̃(j)
k = exp

{
g
((L′+L)j)
k

}
the unnormalized probability for the k-th class of

the j-th Categorical distribution. Inference is performed by sampling N distributions in
parallel.

ẑ(j) ∼ Categorical(α̃(j)), (5.27)

We optimize the DSE decoder by minimizing the average of the cross entropies from the
probability distributions α(j) to the distributions α̃(j). Designating |·| as the softmax
operator,

L(DSE) = − 1

N

N−1∑
j=0

∣∣∣α(j)
∣∣∣ · log

∣∣∣α̃(j)
∣∣∣. (5.28)

5.3 Experiments

5.3.1 Data

Our experiments rely on the left channel of the CHiME-2 medium vocabulary dataset
(Vincent et al., 2013), consisting of spoken utterances that have been mixed with interfering
background sounds. The background sounds are collected from a portion of the CHiME
corpus (Christensen, Barker, Ma, & Green, 2010) and consist of over five hours of domestic
sounds recorded in a living room environment using a B&K head and torso simulator (HATS).
Typical interfering noises include children laughing; electronic sounds; and street noises. The
HATS was also used to catalog binaural room impulse responses (BRIRs).

The CHiME-2 dataset builds an extensive catalog by creating noisy mixtures, in which
interfering noises are mixed with clean spoken utterances from the Wall Street Journal
(WSJ0) 5k vocabulary read speech corpus (Garofalo, Graff, Paul, & Pallett, 2007). The
clean sources are first convolved with the BRIRs. Following the procedure established in
(Barker, Vincent, Ma, Christensen, & Green, 2013), the noisy mixtures are created at signal
to noise (SNR) levels of −6 dB, −3 dB, 0 dB, 3 dB, 6 dB and 9 dB, where SNR is computed
in the following way.

SNR = 10 log10

(
s(l) · s(l) + s(r) · s(r)

y(l) · y(l) + y(r) · y(r)

)
, (5.29)

with the l and r labels indicating the left and right channels.

The desired SNR levels were achieved by scanning the data and matching the utterances to
appropriate segments of interference. This is in contrast to a less ecologically valid but more
common technique of scaling interfering noises relative to the utterances. As a consequence,
the nature of the interfering noises are somewhat dependent on SNR level, with nonstationary
sounds dominating utterances with lower SNRs and almost-stationary noises dominating
utterances with higher SNRs.

Train, development, and test sets are created using disjoint sets of utterances, where each
utterance is a unique speaker paired with a unique text. The interfering noises are shared
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Table 5.1: Description of CHiME-2 dataset and its partitions. Utterances are
disjoint between datasets. Each utterance in the training set is associated with one
interfering noise. Each utterance in the test and development sets is associated
with six interfering noises.

dataset speakers unique utterances total utterances average SNR

train 83 7138 7138 3.2 dB
development 10 409 2454 1.6 dB

test 12 330 1980 2.3 dB

across datasets. Every utterance in the training set is paired with a background noise related
to a randomly chosen SNR level, with no overlap between background noises. The utterances
in the test and development sets are associated with background noises for each of the
six SNR levels, with minor overlap between background noises. The data is recorded at
16,000Hz and transformed to STFTs using a frame size of 512 and frame shift of 128 samples.
Table 5.1 summarizes the dataset partitioning.

5.3.2 Training

The weights of real feedforward layers are initialized using the Glorot method (Glorot, Bordes,
& Bengio, 2011). Complex layers are initialized using complex orthogonal weights (Trabelsi
et al., 2017). Real networks are optimized using the Adam optimizer, and complex networks
use the Complex Adam optimizer discussed in Chapter 3. Models are trained until no
decrease in the objective function is observed for ten consecutive epochs on the validation
set.

5.3.3 Metrics

Our models are evaluated using the signal to distortion ratio (SDR) between estimated
and reference waveforms, after reconstruction by the overlap-add method. They’re also
evaluated using the magnitude signal to distortion ratio (MSDR) between the magnitude
estimated spectra and magnitude reference spectra. Let Xf,t and X̂f,t be reference and
estimated spectra. Let y and ŷ be centered (i.e. mean-subtracted) corresponding reference
and centered estimated waveforms. Then SDR and MSDR are computed in the following
way.

α =
ŷ · y
y · y (5.30)

SDR(y, ŷ), = 10 log10

(
(αy) · (αy)

(ŷ − αy) · (ŷ − αy)

)
and (5.31)

MSDR(X, X̂) = 10 log10

( ∑T−1
t=0 |αxt| · |αxt|∑T−1

t=0 (|x̂t| − |αxt|) · (|x̂t| − |αxt|)

)
. (5.32)
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Table 5.2: Conditional VQ models and their settings.

Model Name
Parameter Cplx-CVQ-1 Cplx-CVQ-2 Cplx-CVQ-3 Real-CVQ

Model Weights complex complex real real
Inputs s(ac) s(ac) s(ri) s(r)

Outputs ŝ(ac) ŝ(c) ŝ(ri) ŝ(r)

Inputs Dim 512 512 514 257
Outputs Dim 512 257 514 257
Enc Units 512 512 512 512
Dec Units 1024 512 1024 1024
Enc Acta modReLUc modReLUc modReLUc tanh
Dec Actb modReLUc modReLUc modReLUc ReLU
Temp 0.7 0.7 1.3 1.0
Dropout 0.0 0.0 0.0 0.1
a Encoder activation.
b Decoder activation.
c Modulus rectified linear unit, see Table 3.2.

5.3.4 Conditional VQ

Complex and real Conditional VQ models were trained with one hidden layer (512 units)
in the encoder and two hidden layers (1024 units each) in the decoder. We investigate two
complex models (Cplx-CVQ-1 and Cplx-CVQ-2). They’re both given augmented complex
inputs. The first model is trained to reproduce augmented complex signal at its output, and
the second model produces non-augmented complex signal. Despite the fact that we measure
performance based upon the non-augmented output, we hypothesize that using augmented
output in the objective function might constrain the model to find a better solution, as it is
forced to learn the relationship between non-conjugate and conjugate units. We additionally
investigate two real models. The first encodes and decodes real and imaginary components,
therefore encoding a complex-valued signal using real weights. The second model is real,
learning to encode and decode the magnitude signal.

Table 5.2 provides a listing of the Conditional VQ models, along with some of their settings.
In particular, we found that the choice of temperature during training can have a big influence
on the success of training a stochastic network. Our models were trained at temperatures
1/3, 2/3, 3/3 and 4/3, and only the best models are shown. (During testing the temperature
is set to a very small value, which gives approximately discrete samples.)

Models employed a stochastic code layer consisting of N = 512 categorical codes of size
K = 4. These code sizes were chosen after evaluating the performance on a range of code
sizes. Figure 5.3 shows that, for a fixed code size, the reconstruction SDR of a complex
Conditional VQ network improves approximately logarithmically with the number codes.

Table 5.3 shows the final SDR results for complex and real conditional VQ models. We
first examine the complex models, which are depicted in the upper portion of the table.
SDR measures the signal to distortion ratio of the reconstructed signal (including phase)
with respect to the original signal. There are three models—Cplx-CVQ-1, Cplx-CVQ-2 and
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Figure 5.3: Complex Conditional VQ. SDR for different values of N (number of codes)
and a fixed code size of K = 4.

Table 5.3: Conditional VQ results. The models listed in the upper
portion are complex. The model in the lower portion is real. The
performances of the complex and real models are directly comparable
only with respect to MSDR and SDR-OP. All results are in dB.

Model SDR MSDR SDR-OPa SDR-NPb

Cplx-CVQ-1c 19.6 18.0 22.1 —
Cplx-CVQ-2c 18.1 16.5 20.4 —
Cplx-CVQ-2d 16.9 15.6 19.1 —
Cplx-CVQ-3 15.0 14.0 16.8 —

Real-CVQc — 19.6 23.6 16.8
a Signal to distortion ratio using oracle phase. The ground truth phase
replaces the reconstructed phase (complex nets) or is added to the
reconstructed signal (real nets).

b Signal to distortion ratio using noisy phase. The phase of the corresponding
noisy signal is added to the reconstructed signal.

c Using Complex Adam optimization.
d Using naive Adam optimization.

Cplx-CVQ-3—that reconstruct phase and magnitude. The model that employs real weights
(Cplx-CVQ-3) underperforms the Cplx-CVQ-1 by more than 4.5 dB. The CplX-CVQ-1
model, which uses an augmented complex output, outperforms one with a truncated complex
output by about 1.5 dB.

The default method of optimizing complex models was using the Complex Adam algorithm
discussed in Chapter 3. We also trained Cplx-CVQ-2 using the naive implementation of
Adam, in which a moving average of the uncentered pseudo-variance of the gradients is
stored, rather than the uncentered variance. Cplx-CVQ-2 converges to a worse solution using
the naive Adam algorithm.

The magnitude SDR (MSDR) shows us the relative performance of the models if we strip
away the phase, providing an idea of how well the models are able to learn magnitude
only. The three complex models show the same trend in performance, i.e. the model using
augmented complex outputs performs the best. Finally, SDR-OP shows the performance
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Figure 5.4: Complex Conditional VQ predictions. Top left: power spectrogram of a
clean speech utterance from the test set. Top right: a power spectrogram reconstructed
using Cplx-CVQ-1. Bottom: stochastic codes inferred by the model.
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of the models if we replace the reconstructed phase with an oracle, or ground truth, phase.
Again, the four models follow the same trends in performance.

Figure 5.4 shows three images. The upper left image is the power spectrogram of a clean
speech utterance from the test set. The upper right panel shows a spectrogram reconstructed
using Cplx-CVQ-1. The model seems to be able to reproduce much of the detail residing
in the lower frequencies, but accuracy drops off steeply above approximately 2.5 kHz. The
bottom panel shows the stochastic codes inferred by the model. The stationary areas in
the clean speech are also mostly stationary in the encodings but could perhaps be more
stationary.

The bottom portion of Table 5.3 shows the performance of the real Conditional VQ network.
It is difficult to provide a direct comparison between this and the complex networks since
the real network does not reconstruct phase. However we can make a comparison between
the quality of magnitude reconstruction for the networks. By observing the MSDR, we can
see that the real network performs better than any of the complex networks. The SDR-OP
also shows that if we had access to the oracle phase at reconstruction time the real network
would perform better than the best complex network by approximately 1.5 dB. The complex
models, which learn phase and magnitude jointly do a poorer job at learning magnitude
than the real model, which only learns magnitude.

Finally, we observe SDR-NP, the signal-to-distortion ratio if we reconstruct the signal using
the noisy phase, or the phase of the speech-noise mixture. The real network achieves 16.8 dB.
Since most speech enhancement models have no mechanism for modeling phase, it is typical to
use the noisy phase at reconstruction time. This metric provides a performance ceiling for our
speech enhancement task. That is, our real DSE Encoder will not be able to achieve better
than 16.8 dB using the Real-CVQ dictionary. Notably, the complex models Cplx-CVQ-1 and
Cplx-CVQ-2 each provide a higher performance ceiling, 19.6 dB and 18.1 dB.

5.3.5 DSE Encoder

Table 5.4 shows the settings for two DSE Encoder models (Cplx-DSE and Real-DSE), as
well as a baseline speech enhancement model. The complex DSE model is relatively deep,
with 1 nonlinear complex feedforward layer, followed by a stack of four GRUs. The real DSE
encoder is a little shallower, with no complex nonlinear subnetwork and only 2 stacked gated
recurrent unit layers. Both models were trained by truncating sequences to 512 frames and
employing the backpropagation-through-time method. The output of both models are the
2048 logits associated with 512 groups of 4-class categorical distributions.

We compare our results with the recurrent network proposed by Erdogan et al. (2015). The
baseline model, which uses a phase-sensitive objective function, takes a 100-bin Mel filter
bank as its input and produces enhanced speech at its output. It has two stacked LSTM
layers and trains through sequences of at least 50 frames and no more than 100 frames. At
the time of this writing, the baseline method is the best performing speech enhancement
model.

Table 5.5 shows the performance results for our two DSE Encoders and the baseline. It’s
difficult to make direct comparisons between Real-DSE and Cplx-DSE because the former
jointly models phase and magnitude and the latter infers magnitude only. However, it’s
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Table 5.4: DSE models and their settings.

Model Name
Parameter Cplx-DSE Real-DSE Baselinea

Model Weights complex real real
Inputs y(ac) y(r) mfbb

Outputs ẑ ẑ ŝ(r)

Inputs Dim 512 257 100
Outputs Dim 2048 2048 unknown
Cplx Layers 1 — —
Cplx Units 512 — —
Cplx Act ModReLUc — —
RNN Layers 4 2 2
RNN Units 512 1024 384
RNN Act GRU GRU LSTM
Unrolld 512 512 50 to 100

a Erdogan, Hershey, Watanabe, and Le Roux (2015).
b Mel filter bank.
c Modulus rectified linear unit, see Table 3.2.
d Number of frames used for a training step.

Table 5.5: DSE encoder results. All results are in dB.

Model SDR MSDR SDR-OPa SDR-NPb

Cplx-DSE 10.4 10.9 13.6 —
Real-DSE — 13.2 15.9 13.0
Baseline — — — 14.1

a Signal to distortion ratio using oracle phase. The ground truth phase
replaces the reconstructed phase (complex nets) or is added to the
reconstructed signal (real nets).

b Signal to distortion ratio using noisy phase. The phase of the corresponding
noisy signal is added to the reconstructed signal.

clear that Real-DSE is a better speech enhancement model. The Real-DSE encoder is able
to achieve 13.0 dB SDR when using noisy phase, whereas the complex model achieves only
10.4 dB when inferring phase and magnitude jointly. The real model is also clearly better
when examining the magnitude-only SDR (MSDR) and SDR-OP, where the oracle phase is
substituted. In addition, the baseline model performs better than both of the DSE encoders,
with approximately 1 dB better performance than the real DSE.

5.4 Discussion and Future Work

We presented a two-stage speech enhancement system for real and complex-domain inference.
The first stage of enhancement involves training a discrete stochastic autoencoder for project-
ing real or complex-valued spectra to a categorical latent space. There are a few motivations
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for this architecture. First, we’d like to be able to perform enhancement in a discrete space,
where a cross-entropy loss function does not enforce the same Gaussian assumptions about
a model’s residual as a mean-squared loss function. Second, an autoencoder provides the
opportunity to learn a compact representation of the signal, where we perform inference over
vectors, rather than samples. Third, the proposed architecture allows for jointly modeling
phase and magnitude as complex spectra. Finally, by providing a generative model of multiple
distributions, we open the door in future work to taking advantage of an autoregressive
model that learns a conditional dependence between latent categorical distributions.

We showed that, when modeling complex spectra, the Conditional VQ model benefits from
a complex architecture with complex weights. It also benefits from using an augmented
complex output, as opposed to an non-augmented complex output. The best complex model
(Cplx-CVQ-1) was not able to infer magnitude spectra as well as the real model. This might
be related to the fact that nearly the same number of parameters was used for both models,
whereas the complex model must learn a much larger space of signal.

We show in Fig. 5.3 that it was necessary to use 512 4-class distributions to achieve approxi-
mately 20 dB reconstruction SDR. This number of distributions provides an astronomically
large space over which the autoencoder can make inferences. There are 5124, or more than
1× 10308, unique combinations available to the model, which is many orders of magnitude
greater than the size of the training data (approximately 6.8× 106 frames). It seems that
we should accomplish the same task with far fewer codes. We suspect that part of the
difficulty lies in a noisy gradient. Gradient approximation for stochastic networks is an active
area of research, and while we tested several alternative methods such as the score gradient
trick, variational methods, and the straight-through gradient, reparameterization via the
Concrete distribution gave the best results. We note that while the number of potential code
combinations is huge, the best complex model did not simply learn the training data. The
model’s inferences on the training, development, and test datasets were disjoint, i.e., no two
inputs caused the model to generate the same encoding. Nevertheless, more work is needed
to make the representation more compact.

The baseline speech enhancement is very strong. Regardless, we were disappointed that
neither the complex or real DSE models were able to beat its performance. The real model
approaches the performance of the baseline, with about 1 dB difference in performance,
although the DSE encoder uses many more parameters. We think that leveraging the chain
rule via conditional modeling of latent codes will give us a boost in performance, but this is
reserved for future work. In general, we were disappointed that the complex DSE performed
so much worse than the real DSE, even though the complex Conditional VQ codes provide
a higher performance ceiling. We identify two areas of potential improvement. First, it’s
clear from Fig. 5.4 that the Conditional VQ model does not do a good job at inferring the
detail of the higher frequency components. In future work we will apply pre-emphasis to the
input signal to encourage the model to do a better job at learning the upper frequencies.
Second, the complex Conditional VQ model learns to encode frames of audio with absolute
phase. The phase of an individual frame out of context is arbitrary. Future models will
attempt to capture inter-frame phase dependencies by either explicitly modeling relative
phase differences between neighboring frames or using a sequence-based autoencoder.

It’s clear that there are many further directions for exploration. Nevertheless our models
provide real-domain speech enhancement that is competitive with the current state-of-the-art.
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This chapter also provides a concept case for performing speech enhancement directly on
complex-valued spectra. Considering that the best speech enhancement models do not have
mechanisms for modeling phase, and that they usually fall back to mixing dirty phase back
in, complex-domain speech enhancement represents and exciting and novel direction worthy
of additional investigation.

- 75 -



5. Speech Enhancement

- 76 -



CHAPTER 6

Conclusion

Complex neural networks have existed for some time, but until recently they have gone
largely unnoticed by the deep learning community. There are recent stirrings, e.g., (Arjovsky
et al., 2016; Lee, Wang, Wang, Wang, & Wu, 2017; Trabelsi et al., 2017), that suggest that
deep complex networks will continue to gain increased attention. But at the moment the
literature is relatively sparse. This is the first work to examine deep complex neural networks
in explicit relationship to audio.

In Chapter 2 we find that such work is well-motivated. There are many advantages to
modeling audio in the frequency-domain, as opposed to the time-domain. Unfortunately,
doing so usually involves truncating the phase components of complex-valued audio, as deep
complex-valued networks have not been well-studied. Phase encodes fine-scale temporal
structure, which is important to tasks that depend on a strong acoustic model, for instance
machine listening and audio synthesis. These are areas where the success of a model may
be determined by whether the temporal structure within and between audio channels and
frequency bins are represented well.

The outstanding literature doesn’t provide much guidance on suitable architectures for
deep complex networks. Notably, one must make an informed decision about the relative
importance of holomorphicity in a network. On the one hand, holomorphic activation
functions, like those from the class of elementary transcendental functions, ensure that a
complex gradient exists. But we show in Chapter 3 that one can compose holomorphic and
non-holomorphic functions in a single neural network. Doing so opens us to a much richer
palette of possibilities for network design, allowing us to designate portions of the network
that process magnitude independently from the phase.

Until recently, it hasn’t been clear how to optimize deep complex networks without the
burdensome task of writing code from scratch. We show using the Wirtinger derivatives that,

- 77 -



6. Conclusion

as long as the objective function is real, backpropagation is relatively simple. We also show
that optimization of such networks requires little more than modifying a few lines of code
in TensorFlow, a widely-used deep learning library. For instance, the Adam optimization
algorithm makes an estimate of the second order statistics of the gradient. For complex
optimization, the current implementation needs to be tweaked to ensure that a running
average of each gradient’s variance, and not pseudo-variance, is monitored. We show in our
speech enhancement task in Chapter 5 that the naive method converges to a worse solution.

The guidelines set forth in Chapters 2 and 3 are borne out in Chapters 4 and 5, where we
present the results of two real-world and relevant tasks using real and complex networks. In
the first task we infer the lateral locations of musical audio objects embedded in binaural
audio. The complex model outperforms a comparable real model, as well as several baselines.
We show that the task is not successful when using a fully complex network with hyperbolic
tangent activation functions, but is successful when using a partially complex network. This
result underscores that, whereas some practitioners have espoused fully complex models,
deeper networks may be too constrained when fully complex.

In the second task, we tackle speech enhancement by proposing a novel autoencoding
architecture that combines a complex network with a stochastic hidden layer. The autoencoder
is a generative dictionary that jointly provides discrete encodings of phase and magnitude.
The autoencoder’s latent space is used to train a dynamic speech enhancement model, which
is a generative temporal model of complex variables. The complex models do not outperform
comparable real models, nor do they outperform a state of the art baseline model. Yet
we show that the complex model raises the theoretical ceiling of performance over the real
model. We also show, in further support of our analysis in Chapter 3, that the augmented
complex signal provides improvement over a non-augmented complex signal, as well as a real
model that has a real-imaginary input signal representation.

In summary, this manuscript makes important contributions to a nascent field. It provides
guidance on how to design and train deep complex networks for audio, enabling compositions
of arbitrarily deep networks. It also provides use case evidence for relevant real-world tasks,
opening a path to future research. While our complex models cannot claim to beat state of
the art methods using real networks, we note that the mere application of complex networks
is novel, and that a great deal of future work will be necessary in order for complex networks
to become competitive with their real counterparts. It took decades for real-valued deep
networks to reach their current state of maturity and we expect that complex networks will
become more viable as the research community contributes to their advancement.

We believe that complex neural training and inference of deep models is an exciting field of
machine learning. There remain a number of research directions to follow. The activation
functions presented in this thesis are modeled off of functions that have proven to work
well for real networks, but there’s no concrete evidence that these functions are the best
types of nonlinearities for complex training. This manuscript hasn’t studied regularization
in complex networks. Complex networks are more regularized than real networks since a
complex-valued function has less degrees of freedom than independent functions of real and
imaginary components. It’s clear that complex networks open a number of potential research
questions and directions.
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